帳號:guest(3.137.198.39)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡志昱
作者(外文):Tsai, Jr-Yu
論文名稱(中文):應用混合簡化群體正餘弦演算法於工業4.0智慧工廠雲/霧混和計算系統最佳化佈署問題之研究
論文名稱(外文):Simplified Swarm Optimization-Sine Cosine Algorithm for Optimal Deployment of Hybrid Cloud/Fog Computing System of Industry 4.0 Smart Factory
指導教授(中文):葉維彰
指導教授(外文):Yeh, Wei-Chang
口試委員(中文):魏上佳
謝宗融
口試委員(外文):Wei, Shang-Chia
Hsieh, Tsung-Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:106034525
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:88
中文關鍵詞:混合簡化群體正餘弦演算法啟發式演算法多階層設施佈置問題雲/霧混和計算系統智能工廠
外文關鍵詞:Simplified Swarm Optimization-Sine Cosine AlgorithmHeuristic AlgorithmHierarchical Facility Location ProblemsCloud/Fog Hybrid Computing SystemSmart Factory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:423
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
科技不斷演進,互聯網、物聯網和人工智能…等等新興技術蓬勃發展,車聯網、智慧城市和智慧工廠…等等新型態應用環境不斷產生,伴隨而來數據的大量增加及對於即時回應的要求提高,霧計算概念便在此背景中誕生。霧計算作為雲計算概念的延伸,最早是在2011年由思科(Cisco)公司提出,在霧計算的模式中,資料將不再集中於雲端處理,而是分散到網路邊緣的設備中,不像雲計算需要性能強大的計算機進行集中化的運算,網路邊緣的單一設備不需要太強大的性能,但依賴其分散運算的效果,使其依然可以達成快速地處理資料之需求。
本研究根據過往文獻提出兩種不同模型,第一種模型是考量多樣感測設備的多階層式設施佈署問題模型,第二種模型是延續第一種模型並提出考量霧計算裝置彼此可相連傳輸的多階層式設施佈署問題模型。而設施佈署問題已被證明是NP-Hard問題,故本研究採用啟發式演算法來進行求解。本研究提出一新興的混合算法稱為混合簡化群體正餘弦演算法(Simplified Swarm Optimization-Sine Cosine Algorithm, SSO-SCA),另外也使用其他著名啟發式演算法如:人工蜂群演算法(Artificial Bee Colony, ABC)、基因演算法(Genetic Algorithm, GA)及二進制粒子群演算法(Binary Particle Swarm Optimization, BPSO)及簡化群體法(Simplified Swarm Optimization, SSO)來進行結果比較及探討。
本研究的目的是在高度限制的整數規劃模型下,利用啟發式演算法在合理時間內找出成本較低之佈署方案。研究假設一智能工廠若考慮佈署雲/霧混和計算系統,主要決策佈署之裝置為閘道、霧計算裝置及邊緣裝置位置,同時提出三種不同規模大小問題來進行實驗,以期能找出最有效之方法幫助決策者建置智能工廠最佳雲/霧混和計算系統佈署。
Technology is constantly evolving, and emerging technologies such as the Internet of Things (IoT), and Artificial Intelligence(AI) are booming. In addition, new forms of application environments such as Internet of Vehicle (IoV), Smart Cities and Smart Factories are steadily appearing. With the large increase in data and the increased demand for immediate response, the concept of fog computing was born. Fog computing was first proposed by Cisco in 2011. In fog computing, data processing will no longer be concentrated in the cloud, but distributed to devices at the edge of the network. Devices at the edge of network don’t need powerful performance, but relying on the effects of their decentralized computing, the system can still process data quickly.
This study proposes two different models based on the previous literature. One is a Hierarchical Facility Location Problem model that considers multiple sensing devices. Another extends the first model and considers that the fog computing devices can be connected to each other. The Facility Location Problem has been proved as an NP-Hard problem, so this study uses the heuristic algorithms to solve it. This study proposes an novel algorithm called Simplified Swarm Optimization-Sine Cosine Algorithm (SSO-SCA), and other well-known heuristic algorithms such as Artificial Bee Colony (ABC), Genetic Algorithm (GA), Binary Particle Swarm Optimization (BPSO), and Simplified Swarm Optimization (SSO) are also used to compare the results. The purpose of this study is to use heuristic algorithms to find min-cost deployment under highly restricted model in reasonable time. It is expected to find the most effective way to help decision makers build hybrid cloud/fog computing system in smart factories.
摘要 I
Abstract II
圖目錄 VI
表目錄 VIII
第1章 、緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 研究架構及流程 5
第2章 、文獻回顧 7
2.1 智慧工廠及雲/霧混和計算系統 7
2.2 傳統多階層選址問題及雲/霧混和計算系統佈署問題 7
2.3 啟發式演算法 8
2.3.1 人工蜂群演算法(Artificial Bee Colony, ABC) 9
2.3.2 基因演算法(Genetic Algorithm, GA) 9
2.3.3 二進制粒子群演算法(Binary Particle Swarm Optimization, BPSO) 11
2.3.4 簡化群體法(Simplified Swarm Optimization, SSO) 11
2.3.5 正餘弦演算法(Sine Cosine Algorithm, SCA) 12
第3章 、問題描述 14
3.1 環境架構及假設 14
3.1.1 環境架構 14
3.1.2 問題假設 15
3.2 符號定義 18
3.3 數學模型 21
3.3.1 模型一-原參考文獻模型 21
3.3.2 模型二-考量霧計算裝置互通性 24
3.4 實驗問題 27
第4章 、研究方法 29
4.1 編碼方式 30
4.1.1 編碼介紹 30
4.1.2 連結變數訂定方式 30
4.1.3 編碼範例 32
4.2 初始解產生 33
4.3 啟發式演算法 34
4.3.1 人工蜂群演算法(Artificial Bee Colony, ABC) 34
4.3.2 基因演算法(GA) 39
4.3.3 二進制粒子群演算法(BPSO) 44
4.3.4 簡化群體法(SSO) 48
4.3.5 混合簡化群體正餘弦演算法(SSO-SCA) 52
4.4 適應值函數計算步驟 59
第5章 、實驗結果與分析 61
5.1 實驗問題參數 61
5.2 演算法參數設定與實驗設計 63
5.2.1 簡化群體法實驗參數設計 63
5.2.2 比較之啟發式演算法參數設定 68
5.3 實驗結果 69
5.3.1 啟發式演算法實驗結果分析 69
5.3.2 相同時間設定下啟發式演算法實驗結果 74
5.3.3 模型一及模型二決策比較 78
第6章 、結論與未來研究方向 82
6.1 結論 82
6.2 未來研究方向 83
參考文獻 84
附錄 87
[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, "Fog computing and its role in the internet of things," in Proceedings of the first edition of the MCC workshop on Mobile cloud computing, 2012, pp. 13-16: ACM.
[2] S. Sarkar and S. Misra, "Theoretical modelling of fog computing: A green computing paradigm to support IoT applications," IET Networks, vol. 5, no. 2, pp. 23-29, 2016.
[3] A. D. Shuo-Yan Chou, "智慧工廠簡介," 科儀新知, no. 208, pp. 5-15, 2016.
[4] J. Lee, T. Kwon, and J. Song, "Group connectivity model for industrial wireless sensor networks," IEEE Transactions on Industrial Electronics, vol. 57, no. 5, pp. 1835-1844, May 2010 2010.
[5] C.-C. Lin, D.-J. Deng, Z.-Y. Chen, and K.-C. Chen, "Key design of driving industry 4.0: Joint energy-efficient deployment and scheduling in group-based industrial wireless sensor networks," IEEE Communications Magazine, vol. 54, no. 10, pp. 46-52, October 2016 2016.
[6] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, "Efficient algorithms for capacitated cloudlet placements," IEEE Transactions on Parallel and Distributed Systems vol. 27, no. 10, pp. 2866-2880, 2016.
[7] C.-C. Lin and J.-W. Yang, "Cost-efficient Deployment of Fog Computing Systems at Logistics Centers in Industry 4.0," IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4603-4611, 2018.
[8] P. Guo, B. Lin, X. Li, R. He, and S. Li, "Optimal deployment and dimensioning of fog computing supported vehicular network," in 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 2016, pp. 2058-2062: IEEE.
[9] N. Megiddo and A. Tamir, "On the complexity of locating linear facilities in the plane," Operations Research Letters, vol. 1, no. 5, pp. 194-197, 1982.
[10] W.-C. Yeh, "Simplified swarm optimization in disassembly sequencing problems with learning effects," Computers & Operations Research, vol. 39, no. 9, pp. 2168-2177, 2012.
[11] W.-C. Yeh, "Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm optimization," IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 42, no. 1, pp. 250-261, 2012.
[12] C.-M. Lai, W.-C. Yeh, and Y.-C. Huang, "Entropic simplified swarm optimization for the task assignment problem," vol. 58, pp. 115-127, 2017.
[13] V. Marianov and D. Serra, "Hierarchical location–allocation models for congested systems," European Journal of Operational Research, vol. 135, no. 1, pp. 195-208, 2001.
[14] M. Crepinsek, S.-H. Liu, and M. Mernik, "Exploration and exploitation in evolutionary algorithms: A survey " ACM Computing Surveys, vol. 45, no. 3, pp. 1-33, 2013.
[15] D. Karaboga, "An idea based on honey bee swarm for numerical optimization," Technical report-tr06, Erciyes university, engineering faculty, computer …2005.
[16] D. Karaboga and B. Basturk, "A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm," Journal of global optimization, vol. 39, no. 3, pp. 459-471, 2007.
[17] 李維平, 李元傑, and 謝明勳, "以群中心策略改良人工蜂群演算法," 資訊管理學報, vol. 21, no. 1, pp. 25-43, 2014.
[18] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, 1992.
[19] D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, "Genetic algorithm optimization for focusing through turbid media in noisy environments," Optics express, vol. 20, no. 5, pp. 4840-4849, 2012.
[20] F. Altiparmak, M. Gen, L. Lin, and T. Paksoy, "A genetic algorithm approach for multi-objective optimization of supply chain networks," Computers industrial engineering, vol. 51, no. 1, pp. 196-215, 2006.
[21] Y.-W. Leung and Y. Wang, "An orthogonal genetic algorithm with quantization for global numerical optimization," IEEE Transactions on Evolutionary computation, vol. 5, no. 1, pp. 41-53, 2001.
[22] J. Kennedy and R. C. Eberhart, "A discrete binary version of the particle swarm algorithm," in 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation, 1997, vol. 5, pp. 4104-4108: IEEE.
[23] R. Eberhart and J. Kennedy, "Particle swarm optimization," in Proceedings of the IEEE international conference on neural networks, 1995, vol. 4, pp. 1942-1948: Citeseer.
[24] W.-C. Yeh, "A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems," Expert Systems with Applications, vol. 36, no. 5, pp. 9192-9200, 2009.
[25] W.-C. Yeh, "Orthogonal simplified swarm optimization for the series–parallel redundancy allocation problem with a mix of components," Knowledge-Based Systems, vol. 64, pp. 1-12, 2014.
[26] S. Mirjalili, "SCA: a sine cosine algorithm for solving optimization problems," Knowledge-Based Systems, vol. 96, pp. 120-133, 2016.
[27] 何秀丽, 任智源, 史晨华, and 丛犁, "面向医疗大数据的云雾网路及其分布式计算方案," 西安交通大学学报, vol. 50, pp. 71-77, 2016.
[28] D. H. Wolpert and W. Macready, "No free lunch theorems for optimization," IEEE transactions on evolutionary computation, vol. 1, no. 1, pp. 67-82, 1997.
[29] "Advantech.com, Inc., [Online]https://buy.advantech.com.tw/,"
[30] J. Derrac, S. García, D. Molina, and F. Herrera, "A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms," Swarm Evolutionary Computation, vol. 1, no. 1, pp. 3-18, 2011.
[31] S. Holm, "A simple sequentially rejective multiple test procedure," Scandinavian journal of statistics, pp. 65-70, 1979.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *