帳號:guest(3.136.23.23)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):辛境浩
作者(外文):Shin, Ching-Hao
論文名稱(中文):應用非支配改良式排序簡化群體演算法求解多目標機門穩健性指派問題
論文名稱(外文):Non-dominated sorting improved Simplified Swarm Optimization for Robust Multi-objective Gate Assignment Problem
指導教授(中文):葉維彰
指導教授(外文):Yei, Wei Chang
口試委員(中文):賴鵬仁
朱大中
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:106034524
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:74
中文關鍵詞:機門指派穩健性多目標問題改良式簡化群體演算法
外文關鍵詞:Gate AssignmentRobustnessMulti-objective problemimproved Simplified Swarm Optimization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:726
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在機場的眾多作業中,機門指派,被視為是相當重要的任務之一。它關注的是將機門指派給航班提供旅客上下機,以及分配位置處理從飛行開始到結束的各項相關作業(如:安全檢查、機械維修和旅客上下機等)。本研究的目標,旨在降低航班間發生機門衝突的機率藉此提升指派的穩健性,同時,有效的提升機場設施的使用率。故一個多目標的指派模型在本研究中被提出,希望同時極小化發生機門衝突的機率和指派到停機坪的航班數量。

在大多數的多目標問題中,需要先了解決策者對目標的偏好,給予權重後轉為單一目標進行運算和評估,提供的僅僅是單一最佳解。但在實務問題上,存在一條無法被超越的柏拉圖曲線,在不犧牲任一個目標的情況下,同時追求其他目標的改進。因此,本研究將利用以改良式簡化群體演算法(improved Simplified Swarm Optimization, iSSO) [1] 為基礎的多目標算法,非支配排序改良式簡化群體演算法(Non-dominated Sorting improved Simplified Swarm Optimization, NSiSSO),將非支配排序的概念融於改良式簡化群體演算法中,提供決策者一條無法被超越的解集合,提出多項可替代的等效益方案。

本研究所利用的方法,將和其他多目標的進化式算法進行比較,如非支配排序基因演算法(Non-dominated Sorting Genetic Algorithm) [2]、非支配排序粒子群演算法(Non-dominated Sorting Particle Swarm Optimization) [3]。以實驗結果來看,本研究所使用的方法,不論在曲線上解集合的多樣性和品質上,都有不錯的表現。
Gate Assignment, which is considered one of the most important tasks in airport operations. It focuses on assigning gates to aircrafts while providing passengers embark and disembark, and allocating positions to process all the operations related to the flight from the start to the end. Two factors having significant impact on gate assignment are considered in this research: schedule robustness and facility utilization. A multi-objective assignment model is proposed, with the aim to decrease the conflict probability between two flights and the number of aircrafts assigned to the parking apron simultaneously.

In most of the multi-objective problems, we need to predetermined preference by the decision maker. Giving the objectives weights and then transform to a single objective problem for calculation and evaluation. Providing only one single best solution. However, in multi-objective problem, there is a Pareto set of non-dominated solutions and both objectives should be advanced simultaneously without sacrificing any of them. In this research, a multi-objective evolutionary algorithm based on improved Simplified Swarm Optimization is used, called Non-dominated sorting Simplified Swarm Optimization (NSiSSO). We integrated the concept of non-dominated sorting into the improved Simplified Swarm Optimization. Providing the decision maker a Pareto set of solutions that can’t be surpass.

Compare to other multi-objective evolutionary algorithm, Non-dominated sorting Genetic Algorithm (NSGA-II), Non-dominated sorting Particle Swarm Optimization (NSPSO). Numerical results show that the proposed algorithm can obtain a Pareto set in terms of quality and diversity compare with other existing algorithms.
摘要 I
Abstract II
目錄 1
圖目錄 3
表目錄 5
第一章、 緒論 6
1.1 研究背景與動機 6
1.2 研究目的 7
1.3 研究架構 9
第二章、 文獻回顧 11
2.1 機門指派問題 11
2.2 穩健性和多目標機門指派問題 13
2.3 多目標進化式算法 14
2.4 簡化群體演算法 16
第三章、 數學模型 18
3.1 數學符號 18
3.2 模型假設 19
3.3 目標函數和限制條件 19
第四章、 研究方法 22
4.1 粒子編碼方式 22
4.2 初始解生成方式 23
4.3 適應值函數 26
4.4 非支配排序的概念 26
4.5 改良式簡化群體演算法 28
4.6 NSiSSO更新流程 29
第五章、 實驗結果 32
5.1 實驗資料 32
5.2 多目標問題的評估指標 32
5.3 實驗設計 34
5.4 實驗結果與分析 44
5.5 統計驗證 53
第六章、 結論與未來展望 56
6.1 結論 56
6.2 未來展望 56
第七章、 參考文獻 58
1. Zhang, X., et al., A case study of control and improved simplified swarm optimization for economic dispatch of a stand-alone modular microgrid. Energies, 2018. 11(4): p. 793.
2. Deb, K., et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. in International conference on parallel problem solving from nature. 2000. Springer.
3. Liu, Y. A fast and elitist multi-objective particle swarm algorithm: NSPSO. in 2008 IEEE International Conference on Granular Computing. 2008. IEEE.
4. Yu, C., D. Zhang, and H.Y. Lau, MIP-based heuristics for solving robust gate assignment problems. Computers & Industrial Engineering, 2016. 93: p. 171-191.
5. Deng, W., et al., Study on an improved adaptive PSO algorithm for solving multi-objective gate assignment. Applied Soft Computing, 2017. 59: p. 288-302.
6. Narciso, M.E. and M.A. Piera, Robust gate assignment procedures from an airport management perspective. Omega, 2015. 50: p. 82-95.
7. Yan, S. and C.-M. Huo, Optimization of multiple objective gate assignments. Transportation Research Part A: Policy and Practice, 2001. 35(5): p. 413-432.
8. Hu, X.-B. and E. Di Paolo, An efficient genetic algorithm with uniform crossover for the multi-objective airport gate assignment problem, in Multi-objective memetic algorithms. 2009, Springer. p. 71-89.
9. Mokhtarimousavi, S., D. Talebi, and H. Asgari, A Non-Dominated Sorting Genetic Algorithm Approach for Optimization of Multi-Objective Airport Gate Assignment Problem. Transportation Research Record, 2018. 2672(23): p. 59-70.
10. Cheng, C.-H., S.C. Ho, and C.-L. Kwan, The use of meta-heuristics for airport gate assignment. Expert systems with applications, 2012. 39(16): p. 12430-12437.
11. van Schaijk, O.R. and H.G. Visser, Robust flight-to-gate assignment using flight presence probabilities. Transportation Planning and Technology, 2017. 40(8): p. 928-945.
12. Li, J., J. Zhu, and X. Chen, Robust assignment model of airport gate based on flight delay distribution. J Traffic Transp Eng, 2014. 14: p. 74-82.
13. Obata, T., Quadratic assignment problem: evaluation of exact and heuristic algorithms. 1979.
14. Yan, S., C.-M.J.T.R.P.A.P. Huo, and Practice, Optimization of multiple objective gate assignments. 2001. 35(5): p. 413-432.
15. Haghani, A., M.-C.J.T.R.P.A.P. Chen, and Practice, Optimizing gate assignments at airport terminals. 1998. 32(6): p. 437-454.
16. Bihr, R.A.J.C. and I. Engineering, A conceptual solution to the aircraft gate assignment problem using 0, 1 linear programming. 1990. 19(1-4): p. 280-284.
17. Zhao, H. and L. Cheng, Ant colony algorithm and simulation for robust airport gate assignment. Mathematical Problems in Engineering, 2014. 2014.
18. Marinelli, M., et al., Fusion of two metaheuristic approaches to solve the flight gate assignment problem. 2015. 10: p. 920-930.
19. Mokhtarimousavi, S., D. Talebi, and H.J.T.R.R. Asgari, A Non-Dominated Sorting Genetic Algorithm Approach for Optimization of Multi-Objective Airport Gate Assignment Problem. 2018. 2672(23): p. 59-70.
20. Yeh, W.-C.J.E.S.w.A., A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems. 2009. 36(5): p. 9192-9200.
21. Yeh, W.-C., A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems. Expert Systems with Applications, 2009. 36(5): p. 9192-9200.
22. Lai, C.-M., Multi-objective simplified swarm optimization with weighting scheme for gene selection. Applied Soft Computing, 2018. 65: p. 58-68.
23. Huang, C.-L., et al. Multi Objective Scheduling in Cloud Computing Using MOSSO. in 2018 IEEE Congress on Evolutionary Computation (CEC). 2018. IEEE.
24. Bouras, A., et al., The airport gate assignment problem: a survey. The scientific world journal, 2014. 2014.
25. Steuart, G.N., Gate position requirements at metropolitan airports. Transportation Science, 1974. 8(2): p. 169-189.
26. Drexl, A. and Y. Nikulin, Multicriteria airport gate assignment and Pareto simulated annealing. IIE Transactions, 2008. 40(4): p. 385-397.
27. Li, C., Airport gate assignment A hybrid model and implementation. arXiv preprint arXiv:0903.2528, 2009.
28. Yan, S. and C.-H. Tang, A heuristic approach for airport gate assignments for stochastic flight delays. European Journal of Operational Research, 2007. 180(2): p. 547-567.
29. Şeker, M. and N. Noyan, Stochastic optimization models for the airport gate assignment problem. Transportation Research Part E: Logistics and Transportation Review, 2012. 48(2): p. 438-459.
30. Prem Kumar, V. and M. Bierlaire, Multi‐objective airport gate assignment problem in planning and operations. Journal of advanced transportation, 2014. 48(7): p. 902-926.
31. Xu, J. and G. Bailey. The airport gate assignment problem: mathematical model and a tabu search algorithm. in Proceedings of the 34th annual Hawaii international conference on system sciences. 2001. IEEE.
32. Lim, A., B. Rodrigues, and Y. Zhu, Airport gate scheduling with time windows. Artificial Intelligence Review, 2005. 24(1): p. 5-31.
33. Lim, A. and F. Wang. Robust airport gate assignment. in 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05). 2005. IEEE.
34. Yan, S., C.-Y. Shieh, and M. Chen, A simulation framework for evaluating airport gate assignments. Transportation Research Part A: Policy and Practice, 2002. 36(10): p. 885-898.
35. Bolat, A., Procedures for providing robust gate assignments for arriving aircrafts. European Journal of Operational Research, 2000. 120(1): p. 63-80.
36. Wang, L. Optimized assignment of civil airport gate. in 2010 international conference on intelligent system design and engineering application. 2010. IEEE.
37. Bolat, A., Models and a genetic algorithm for static aircraft-gate assignment problem. Journal of the Operational Research Society, 2001. 52(10): p. 1107-1120.
38. Ding, H., et al., New heuristics for over-constrained flight to gate assignments. Journal of the Operational research Society, 2004. 55(7): p. 760-768.
39. Dorigo, M. and G. Di Caro. Ant colony optimization: a new meta-heuristic. in Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406). 1999. IEEE.
40. Diepen, G., et al., Finding a robust assignment of flights to gates at Amsterdam Airport Schiphol. Journal of Scheduling, 2012. 15(6): p. 703-715.
41. Daş, G.S., New multi objective models for the gate assignment problem. Computers & Industrial Engineering, 2017. 109: p. 347-356.
42. Das, I. and J.E. Dennis, A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Structural optimization, 1997. 14(1): p. 63-69.
43. Deb, K., A. Pratap, and T. Meyarivan. Constrained test problems for multi-objective evolutionary optimization. in International conference on evolutionary multi-criterion optimization. 2001. Springer.
44. Holland, J.H., Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. 1992: MIT press.
45. Kennedy, J., Particle swarm optimization. Encyclopedia of machine learning, 2010: p. 760-766.
46. Glover, F. and M. Laguna, Tabu search, in Handbook of combinatorial optimization. 1998, Springer. p. 2093-2229.
47. Yeh, W.-C., Novel swarm optimization for mining classification rules on thyroid gland data. Information Sciences, 2012. 197: p. 65-76.
48. Huang, C.-L., A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems. Reliability Engineering & System Safety, 2015. 142: p. 221-230.
49. Yeh, W.-C., Simplified swarm optimization in disassembly sequencing problems with learning effects. Computers & Operations Research, 2012. 39(9): p. 2168-2177.
50. Yeh, W.-C., Orthogonal simplified swarm optimization for the series–parallel redundancy allocation problem with a mix of components. Knowledge-Based Systems, 2014. 64: p. 1-12.
51. Lai, C.-M., W.-C. Yeh, and Y.-C. Huang, Entropic simplified swarm optimization for the task assignment problem. Applied Soft Computing, 2017. 58: p. 115-127.
52. Wei, D. and C. Liu. Optimizing gate assignment at airport based on genetic-tabu algorithm. in 2007 IEEE International Conference on Automation and Logistics. 2007. IEEE.
53. Ghazouani, H., M. Hammami, and O. Korbaa. Solving airport gate assignment problem using Genetic Algorithms approach. in 2015 4th International Conference on Advanced Logistics and Transport (ICALT). 2015. IEEE.
54. Li, X. A non-dominated sorting particle swarm optimizer for multiobjective optimization. in Genetic and Evolutionary Computation Conference. 2003. Springer.
55. Srinivas, N. and K. Deb, Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 1994. 2(3): p. 221-248.
56. Yeh, W.-C., An improved simplified swarm optimization. Knowledge-Based Systems, 2015. 82: p. 60-69.
57. Zhang, H.-H., Q.-W. Xue, and Y. Jiang, Multi-objective gate assignment based on robustness in hub airports. Advances in Mechanical Engineering, 2017. 9(2): p. 1687814016688588.
58. Okabe, T., Y. Jin, and B. Sendhoff. A critical survey of performance indices for multi-objective optimisation. in The 2003 Congress on Evolutionary Computation, 2003. CEC'03. 2003. IEEE.
59. Coello, C.A.C. and M.R. Sierra. A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. in Mexican International Conference on Artificial Intelligence. 2004. Springer.
60. Kalyanmoy, D. and K. Deb, Multi-objective optimization using evolutionary algorithms. 2001. West Sussex, England: John Wiley, 2001.
61. Van Veldhuizen, D.A., Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. 1999, AIR FORCE INST OF TECH WRIGHT-PATTERSONAFB OH SCHOOL OF ENGINEERING.
62. Holm, S.J.S.j.o.s., A simple sequentially rejective multiple test procedure. 1979: p. 65-70.
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *