|
[1] Alititi, Marco. (2015). Dealing with imbalance data: undersampling, oversampling and proper cross-validation. https://www.marcoaltini.com/blog/dealing-with-imbalanced-data-undersampling-oversampling-and-proper-cross-validation [2] Berson, A., Smith, S., & Thearling, K. (1999). An overview of data mining techniques: excerpted from the book building data mining applications for CRM. McGraw-Hill, 89-229. [3] Bermingham, Mairead L.; Pong-Wong, Ricardo; Spiliopoulou, Athina; Hayward, Caroline; Rudan, Igor; Campbell, Harry; Wright, Alan F.; Wilson, James F.; Agakov, Felix; Navarro, Pau; Haley, Chris S. (2015). "Application of high-dimensional feature selection: evaluation for genomic prediction in man". Sci. Rep. [4] Breiman, L. (2001a). Random forests. Machine Learning, 45(1), 5-32. [5] Breiman, L. (2001b). Statistical modeling: The Two Cultures, Statistical Science, 16, 199 -215. [6] Chen, K. Y., & Wang, C. H. (2007). Support vector regression with genetic algorithms in forecasting tourism demand. Tourism Management, 28(1), 215-226. [7] Chien, C. F., & Chen, L. F. (2008). Data mining to improve personnel selection and enhance human capital: a case study in high-technology industry. Expert Systems With Applications, 34(1), 280-290. [8] Chien, C.F. & Hsu C.Y. (2014) Data Mining and Big Data Analysis. CRC Press. [9] Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996a). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37. [10] Gareth James; Daniela Witten; Trevor Hastie; Robert Tibshirani (2013). An Introduction to Statistical Learning. Springer. p. 204. [11] Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley. [12] Górny, Z., Kluska-Nawarecka, S., Wilk-Kołodziejczyk, D., & Regulski, K. (2010). Diagnosis of casting defects using uncertain and incomplete knowledge. Archives of Metallurgy and Materials, 55(3), 827-836. [13] Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier. [14] Hui, S. C., & Jha, G. (2000). Data mining for customer service support. Information & Management, 38(1), 1-13. [15] Moshkovich, H. M., Mechitov, A.I. & Olson, D.L. (2002). Rule Induction in the Data Mining: Effect of Ordinal Scales. Expert System with Applications, 22(4), pp.301-311. [16] Quinlan, J.R. (1986), Induction of Decision Tree, Machine Learning, Vol.1, pp.81-106 [17] Shen, C., Wang, L., & Li, Q. (2007). Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. Journal of Materials Processing Technology, 183(2), 412-418. [18] Su, Chao-Ton (2013)。Off-Line: Methods and Applications [19] Su, C. T., Wang, P. C., Chen, Y. C., & Chen, L. F. (2012). Data mining techniques for assisting the diagnosis of pressure ulcer development in surgical patients. Journal of Medical Systems, 36(4), 2387-2399. [20] Su, C.T., Wang, P.C., Chen, Y.C. and Chen, L.F. (2012). Data mining techniques for assisting the diagnosis of pressure ulcer development in surgical patients. Journal of Medical Systems, 36(4), 2387-2399. [21] Su, C.T., Yang, C.H., Hsu, K.H. and Chiu, W.K. (2006). Data mining for the diagnosis of type II diabetes from three-dimensional body surface anthropometrical scanning data. Computers and Mathematics with Applications, 51(1), 1075-1092. [22] Zhou, C. C., Yin, G. F., & Hu, X. B. (2009). Multi-objective optimization of material selection for sustainable products: artificial neural networks and genetic algorithm approach. Materials & Design, 30(4), 1209-1215.
|