|
1. Ait-Alla, A., Teucke, .M, Lütjen, M., Beheshti-Kashi, S. and Reza Karimi, H. (2014). Robust Production Planning in Fashion Apparel Industry under Demand Uncertainty via Conditional Value at Risk. Mathematical Problems in Engineering, volume 2014. 2. Alem, D., Clark, A., Moreno, A. (2016). Stochastic network models for logistics planning in disaster relief. European Journal of Operational Research, vol. 255, pp. 187–206. 3. Alexander, S., Coleman, T. F., and Li, Y. (2006). Minimizing CVaR and VaR for a portfolio of derivatives. Journal of Banking and Finance, vol. 30, pp. 583–605. 4. Andersson, F., Mausser, H., Rosen, D., and Uryasev, S. (2001). Credit risk optimization with conditional value at risk criterion. Mathematical Programming, vol. 89, no.2, pp. 273–291. 5. Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical finance, vol. 9, no. 3, pp. 203–228. 6. Avramidis, A.N., and Wilson, J. R. (1998). Correlation-induction techniques for estimating quantiles in simulation experiments. Operations Research, vol. 46, no. 4, pp. 574–591. 7. Bahadur, R. R. (1996). A Note on Quantiles in Large Samples. The Annals of Mathematical Statistics, vol. 37, no. 3, pp. 577-580. 8. Barton R. R., Ivey, J.S. and Jr. (1996). Nelder-Mead Simplex Modifications for Simulation Optimization. Management Science, vol. 42, no. 7, pp. 954-973. 9. Barton, R. R., Meckesheimer, M. (2006). Metamodel-Based Simulation Optimization. Handbook in OR & MS, vol. 13, ch. 18, pp. 535-574. 10. Basova, H. G., Rockafellar, R. T., and Royset, J. O. (2011). A computational study of the buffered failure probability in reliability-based design optimization. Proceedings of the 11th Conference on Application of Statistics and Probability in Civil Engineering. 11. Carneiro, M. C., Ribas, G. P., and Hamacher, S. (2010). Risk Management in the Oil Supply Chain: A CVaR Approach. Industrial & Engineering Chemistry Research, vol. 49, no.7, pp. 3286-3294. 12. Chang, K. H. Simulation Optimization-based Vehicle Fleet Sizing of Automated Material Handling Systems in Semiconductor Manufacturing. Working Paper, Department of Industrial Engineering and Engineering Management, National Tsing Hua University. 13. Chang, K. H. (2012). Stochastic Nelder-Mead Simplex Method – A new globally convergent direct search method for simulation optimization. European Journal of Operational Research, vol. 220, issue 3, pp. 684-694. 14. Chen C. H., He, D. H., Fu, M., Lee, L. H. (2008). Efficient Simulation Budget Allocation for Selecting an Optimal Subset. INFORMS Journal on Computing, vol. 20, no. 4, pp. 579–595. 15. Chen, C. H., & Lee, L. H. (2011). Stochastic simulation optimization: an optimal computing budget allocation (Vol. 1). World scientific. 16. Chen, C. H., Lin, J., Yücesan, E., & Chick, S. E. (2000). Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discrete Event Dynamic Systems, 10(3), 251-270. 17. Fortin, Ines et al. (2007). An integrated CVaR and real options approach to investments in the energy sector. Reihe Ökonomie / Economics Series, Institut für HöhereStudien (IHS), No. 209, IHS, Wien. 18. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2000). Variance reduction techniques for estimating value-at-risk. Management Science, vol. 46, no. 10, pp. 1349–1364. 19. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2002). Portfolio value-at-risk with heavy-tailed risk factors. Mathematical Finance, vol. 12, no. 3, pp. 239–269. 20. Glynn, P. W. (1996). Importance sampling for Monte Carlo estimation of quantiles. in Proceedings of 1996 Second International Workshop on Mathematical Methods in Stochastic Simulation and Experimental Design, pp. 180–185. 21. Guo, Y., Wood, J., Pan, W., Menga, Q. (2018). Inventory optimization of airport perishable emergency supplies with replacement strategy facing stochastic occurrence time by CVaR approach. International Journal of Disaster Risk Reduction, vol. 31, pp. 170-183. 22. Han C.H., Liu, W.H., and Che, T.Y. (2014). VaR/CVaR estimation under stochastic volatility models. International Journal of Theoretical and Applied Finance, vol. 17, no. 2, 1450009. 23. Hesterberg, T. C., and Nelson, B. L. (1998). Control variates for probability and quantile estimation. Management Science, vol. 44, pp. 1295–1312. 24. Hong, L. J., Liu, G. (2009). Simulating sensitivities of conditional value-at-risk. Management Science, vol. 55, pp. 281–293. 25. Hong, L. J., Hu, Z., and Liu, G. (2014). Monte Carlo methods for value-at-risk and conditional value-at-risk: a review. ACM Transactions on Modeling and Computer Simulation, vol. 24, no. 4, article no. 22. 26. Hsu, J. C., and Nelson, B. L. (1990). Control variates for quantile estimation. Management Science, vol. 36, pp. 835–851. 27. Huang, P., Subramanian, D. (2010). An Importance Sampling Method for Portfolio CVaR Estimation with Gaussian Copula Models. Proceedings of the 2010 Winter Simulation Conference, pp. 2790-2800. 28. Xiao, H., Lee, L. H. & Ng, K. M. (2014). Optimal Computing Budget Allocation for Complete Ranking. IEEE Transactions on Automation Science and Engineering, vol. 11, no. 2, pp. 516 – 524. 29. Iyengar, G., and Ma, A. K. C. (2013). Fast gradient descent method for mean-CVaR optimization. Annals of Operations Research, vol. 205, pp. 203–212. 30. Jorion, P. (1996). Risk2: Measuring the Risk in Value at Risk. Financial Analysts Journal, 47-56. 31. Krokhmal, P., Palmquist, J., and Uryasev, S. (2002). Portfolio optimization with conditional value-at-risk objective and constraints. Journal of Risk, vol. 4, no. 2, pp. 11–27. 32. Lim, C., Sherali, H. D. and Uryasev, S. (2010). Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization. Computational Optimization and Applications, vol. 46, pp. 391–415. 33. Nelder, J. A., and Mead, R. (1965). A simplex method for function minimization. The Computer Journal, vol. 7, no. 4, pp. 308–313. 34. Ogryczak, W., & Śliwiński, T. (2011). On solving the dual for portfolio selection by optimizing conditional value at risk. Computational Optimization and Applications, 50(3), 591-595. 35. Pflug, G. (2000). Some remarks on the value-at-risk and conditional value-at-risk. Probabilistic Constrained Optimization: Methodology and Applications, pp. 272–281. Springer US. 36. Rockafellar, R. T., and Royset, J. O. (2010). On buffered failure probability in design and optimization of structures. Reliability Engineering & System Safety, vol. 95, no. 5, pp. 499–510. 37. Rockafellar, R. T., and Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, vol. 2, no. 3, pp. 21–41. 38. Soltani, M., Kerachian, R., Nikoo, M. R., Noory, H. (2018). Planning for agricultural return flow allocation: application of info-gap decision theory and a nonlinear CVaR-based optimization model. Environmental Science and Pollution Research, vol. 25, Issue 25, pp. 25115–25129. 39. Spall, J. C., (1999). Stochastic optimization and the simultaneous perturbation method. Simulation Conference Proceedings 1999 Winter, vol. 1, pp. 101-109 vol.1. 40. Sun, L., and Hong, L. J. (2010). Asymptotic representations for importance-sampling estimators of value-at-risk and conditional value-at-risk. Operations Research Letters, vol. 38, pp. 246–251. 41. Swann, W. H. (1972). Direct search methods. Numerical methods for unconstrained optimization, 13-28. Tavakoli, M., Shokridehaki, F., Akorede, M. F., Marzband, M., 42. 42. Vechiu, I., Pouresmaeil, E. (2018) CVaR-based energy management scheme for optimal resilience and operational cost in commercial building microgrids. International Journal of Electrical Power & Energy Systems, vol. 100, pp.1-9. 43. Tian, P., Wang, H., & Zhang, D. (1995). Nonlinear Integer Programming by Simulated Annealing. IFAC Proceedings Volumes, 28(10), 629-633. 44. Trindade, A. A., Uryasev, S., Shapiro, A., and Zrazhevsky, G. (2007). Financial prediction with constrained tail risk. Journal of Banking and Finance, vol. 31, pp. 3524–3538. 45. Wu, J., Wu, Z., Wu F., Tang, H., Mao, X. (2018). CVaR risk-based optimization framework for renewable energy management in distribution systems with DGs and EVs. Energy, vol. 143, pp. 323-336. 46. Xue, W., Mab, L., Shen, H. (2015). Optimal inventory and hedging decisions with CVaR consideration. International Journal of Production Economics, vol. 162, pp. 70-82 47. Xiao, H., Gao, S., Lee, L. H. (2017). Simulation budget allocation for simultaneously selecting the best and worst subsets. Automatica, pp.117-127. 48. 連福詩. (2015) ‘改進SNM 演算法計算效率以求解實務問題’. 清華大學工業工程與工程管理學系學位論文, pp. 1-42. 49. 林星妤. (2018) ‘目標式為條件期望值之模擬最佳化演算架構’. 清華大學工業工程與工程管理學系學位論文, pp. 1-53. |