帳號:guest(3.15.137.154)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊士逸
作者(外文):Yang, Shih-I
論文名稱(中文):條件期望值之模擬最佳化演算架構
論文名稱(外文):A Framework for Conditional-Expectation-based Simulation Optimization
指導教授(中文):張國浩
指導教授(外文):Chang, Kuo-Hao
口試委員(中文):吳建瑋
陳文智
口試委員(外文):Wu, Chien-Wei
Chen, Wen-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:106034513
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:53
中文關鍵詞:SNM-CE條件期望值重要性抽樣最佳資源分配法適應性隨機搜尋模擬最佳化無微分最佳化演算法
外文關鍵詞:Stochastic Nelder-Mead Simplex methodConditional ExpectationImportance SamplingOptimal Computing Budget AllocationAdaptive Random SearchSimulation Optimization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:176
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
條件期望值(Conditional Expectation)源於財務金融領域之條件風險值(Conditional Value at Risk),為一個被廣泛使用的風險管理指標。本研究欲求解其無限制式之最佳化問題,改善其估計方法以提升計算效率,並拓展其應用層面。本論文以SNM (Stochastic Nelder-Mead Simplex Method)演算法為基礎,提出一個名為SNM-CE (Stochastic Nelder-Mead Simplex Method for Conditional Expectation)之無微分最佳化演算法。因條件期望值具有隨機性,故需利用隨機模擬以進行估計,本研究基於重要性抽樣(Importance Sampling)與最佳資源分配法(Optimal Computing Budget Allocation, OCBA),在較少之模擬資源下達到一定之估計精確度,且經由修正問題模型之定義與流程,使得上述方法更適合融入本演算架構,提升演算效率。針對SNM演算法本身,本研究進行細部流程上之修正,並提出新的適應性隨機搜尋法(Adaptive Random Search),以提升此演算法之效率。本研究之數值實驗也顯示本演算架構之實用及有效性,值得後續深入研究。
Conditional Expectation(CE) origins from the term “Conditional Value at Risk” in the financial field, which is one of the widely used risk measurement in the practice of risk management. Consider the unconstrained optimization problem of CE, this research aims to improve the computational efficiency with a different estimation method and expand the area of its application. We propose a gradient free optimization method, called Stochastic Nelder-Mead Simplex Method for Conditional Expectation, which is based on the Stochastic Nelder-Mead Simplex Method, to solve the optimization problem of CE. Because of the randomness and complexities, Monte Carlo simulation is applied to estimate the conditional expectation. We use Importance Sampling as variance reduction technique and Optimal Computing Budget Allocation to utilize the simulation resources more efficiently. By revising the problem definition and process of the model, we integrate these above methods into the proposed framework to increase the computational efficiency. As for the original SNM algorithm, this research not only makes revisions on the process details, but also develop a new Adaptive Random Search method to improve the computational efficiency. In the end, a series of numerical experiments was conducted to verify the performance and applicability in real problem. The results show the efficiency and efficacy of our proposed method, which is worth for further investigation.
摘要.........................................................I
Abstract....................................................II
圖目錄.......................................................IV
表目錄........................................................V
第一章 緒論...................................................1
1.1研究背景與動機..............................................1
1.2研究目的...................................................2
1.3論文架構...................................................3
第二章 文獻回顧...............................................4
2.1風險值與條件風險值..........................................4
2.1.1條件期望值之估計..........................................6
2.1.2條件期望值之最佳化問題.....................................8
2.2模擬最佳化..................................................9
2.3最佳資源分配法(Optimal Computing Budget Allocation, OCBA)...11
第三章 數學模型...............................................15
第四章 求解方法...............................................16
4.1條件期望值的估計............................................17
4.1.1原始蒙地卡羅模擬法(Crude Monte Carlo Simulation) ........ 17
4.1.2 重要性抽樣(Importance Sampling).........................18
4.2 最佳資源分配法(OCBA) ......................................19
4.2.1 適用條件期望值之OCBA方法 (OCBA-CE) ......................20
4.2.2 適合SNM演算法之OCBA方法 (SOCBA-mn) ......................21
4.2.3 SOCBA-mn流程詳述........................................22
4.3 SNM-CE (Stochastic Nelder-Mead Simplex Method for Conditional Expectation) ..24
4.3.1 SNM-CE之架構與步驟說明..................................24
4.3.2 收縮失敗時之取代修正....................................28
4.3.3 新適應性隨機搜尋(New Adaptive Random Search) ...........30
第五章 數值實驗..............................................35
5.1實驗設計..................................................35
5.2比較指標..................................................37
5.3數值結果..................................................38
第六章 例題驗證.............................................44
6.1數學模型..................................................44
6.2例題結果..................................................46
第七章 結論與未來研究........................................47
參考文獻.....................................................48
1. Ait-Alla, A., Teucke, .M, Lütjen, M., Beheshti-Kashi, S. and Reza Karimi, H. (2014). Robust Production Planning in Fashion Apparel Industry under Demand Uncertainty via Conditional Value at Risk. Mathematical Problems in Engineering, volume 2014.
2. Alem, D., Clark, A., Moreno, A. (2016). Stochastic network models for logistics planning in disaster relief. European Journal of Operational Research, vol. 255, pp. 187–206.
3. Alexander, S., Coleman, T. F., and Li, Y. (2006). Minimizing CVaR and VaR for a portfolio of derivatives. Journal of Banking and Finance, vol. 30, pp. 583–605.
4. Andersson, F., Mausser, H., Rosen, D., and Uryasev, S. (2001). Credit risk optimization with conditional value at risk criterion. Mathematical Programming, vol. 89, no.2, pp. 273–291.
5. Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical finance, vol. 9, no. 3, pp. 203–228.
6. Avramidis, A.N., and Wilson, J. R. (1998). Correlation-induction techniques for estimating quantiles in simulation experiments. Operations Research, vol. 46, no. 4, pp. 574–591.
7. Bahadur, R. R. (1996). A Note on Quantiles in Large Samples. The Annals of Mathematical Statistics, vol. 37, no. 3, pp. 577-580.
8. Barton R. R., Ivey, J.S. and Jr. (1996). Nelder-Mead Simplex Modifications for Simulation Optimization. Management Science, vol. 42, no. 7, pp. 954-973.
9. Barton, R. R., Meckesheimer, M. (2006). Metamodel-Based Simulation Optimization. Handbook in OR & MS, vol. 13, ch. 18, pp. 535-574.
10. Basova, H. G., Rockafellar, R. T., and Royset, J. O. (2011). A computational study of the buffered failure probability in reliability-based design optimization. Proceedings of the 11th Conference on Application of Statistics and Probability in Civil Engineering.
11. Carneiro, M. C., Ribas, G. P., and Hamacher, S. (2010). Risk Management in the Oil Supply Chain: A CVaR Approach. Industrial & Engineering Chemistry Research, vol. 49, no.7, pp. 3286-3294.
12. Chang, K. H. Simulation Optimization-based Vehicle Fleet Sizing of Automated Material Handling Systems in Semiconductor Manufacturing. Working Paper, Department of Industrial Engineering and Engineering Management, National Tsing Hua University.
13. Chang, K. H. (2012). Stochastic Nelder-Mead Simplex Method – A new globally convergent direct search method for simulation optimization. European Journal of Operational Research, vol. 220, issue 3, pp. 684-694.
14. Chen C. H., He, D. H., Fu, M., Lee, L. H. (2008). Efficient Simulation Budget Allocation for Selecting an Optimal Subset. INFORMS Journal on Computing, vol. 20, no. 4, pp. 579–595.
15. Chen, C. H., & Lee, L. H. (2011). Stochastic simulation optimization: an optimal computing budget allocation (Vol. 1). World scientific.
16. Chen, C. H., Lin, J., Yücesan, E., & Chick, S. E. (2000). Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discrete Event Dynamic Systems, 10(3), 251-270.
17. Fortin, Ines et al. (2007). An integrated CVaR and real options approach to investments in the energy sector. Reihe Ökonomie / Economics Series, Institut für HöhereStudien (IHS), No. 209, IHS, Wien.
18. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2000). Variance reduction techniques for estimating value-at-risk. Management Science, vol. 46, no. 10, pp. 1349–1364.
19. Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2002). Portfolio value-at-risk with heavy-tailed risk factors. Mathematical Finance, vol. 12, no. 3, pp. 239–269.
20. Glynn, P. W. (1996). Importance sampling for Monte Carlo estimation of quantiles. in Proceedings of 1996 Second International Workshop on Mathematical Methods in Stochastic Simulation and Experimental Design, pp. 180–185.
21. Guo, Y., Wood, J., Pan, W., Menga, Q. (2018). Inventory optimization of airport perishable emergency supplies with replacement strategy facing stochastic occurrence time by CVaR approach. International Journal of Disaster Risk Reduction, vol. 31, pp. 170-183.
22. Han C.H., Liu, W.H., and Che, T.Y. (2014). VaR/CVaR estimation under stochastic volatility models. International Journal of Theoretical and Applied Finance, vol. 17, no. 2, 1450009.
23. Hesterberg, T. C., and Nelson, B. L. (1998). Control variates for probability and quantile estimation. Management Science, vol. 44, pp. 1295–1312.
24. Hong, L. J., Liu, G. (2009). Simulating sensitivities of conditional value-at-risk. Management Science, vol. 55, pp. 281–293.
25. Hong, L. J., Hu, Z., and Liu, G. (2014). Monte Carlo methods for value-at-risk and conditional value-at-risk: a review. ACM Transactions on Modeling and Computer Simulation, vol. 24, no. 4, article no. 22.
26. Hsu, J. C., and Nelson, B. L. (1990). Control variates for quantile estimation. Management Science, vol. 36, pp. 835–851.
27. Huang, P., Subramanian, D. (2010). An Importance Sampling Method for Portfolio CVaR Estimation with Gaussian Copula Models. Proceedings of the 2010 Winter Simulation Conference, pp. 2790-2800.
28. Xiao, H., Lee, L. H. & Ng, K. M. (2014). Optimal Computing Budget Allocation for Complete Ranking. IEEE Transactions on Automation Science and Engineering, vol. 11, no. 2, pp. 516 – 524.
29. Iyengar, G., and Ma, A. K. C. (2013). Fast gradient descent method for mean-CVaR optimization. Annals of Operations Research, vol. 205, pp. 203–212.
30. Jorion, P. (1996). Risk2: Measuring the Risk in Value at Risk. Financial Analysts Journal, 47-56.
31. Krokhmal, P., Palmquist, J., and Uryasev, S. (2002). Portfolio optimization with conditional value-at-risk objective and constraints. Journal of Risk, vol. 4, no. 2, pp. 11–27.
32. Lim, C., Sherali, H. D. and Uryasev, S. (2010). Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization. Computational Optimization and Applications, vol. 46, pp. 391–415.
33. Nelder, J. A., and Mead, R. (1965). A simplex method for function minimization. The Computer Journal, vol. 7, no. 4, pp. 308–313.
34. Ogryczak, W., & Śliwiński, T. (2011). On solving the dual for portfolio selection by optimizing conditional value at risk. Computational Optimization and Applications, 50(3), 591-595.
35. Pflug, G. (2000). Some remarks on the value-at-risk and conditional value-at-risk. Probabilistic Constrained Optimization: Methodology and Applications, pp. 272–281. Springer US.
36. Rockafellar, R. T., and Royset, J. O. (2010). On buffered failure probability in design and optimization of structures. Reliability Engineering & System Safety, vol. 95, no. 5, pp. 499–510.
37. Rockafellar, R. T., and Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, vol. 2, no. 3, pp. 21–41.
38. Soltani, M., Kerachian, R., Nikoo, M. R., Noory, H. (2018). Planning for agricultural return flow allocation: application of info-gap decision theory and a nonlinear CVaR-based optimization model. Environmental Science and Pollution Research, vol. 25, Issue 25, pp. 25115–25129.
39. Spall, J. C., (1999). Stochastic optimization and the simultaneous perturbation method. Simulation Conference Proceedings 1999 Winter, vol. 1, pp. 101-109 vol.1.
40. Sun, L., and Hong, L. J. (2010). Asymptotic representations for importance-sampling estimators of value-at-risk and conditional value-at-risk. Operations Research Letters, vol. 38, pp. 246–251.
41. Swann, W. H. (1972). Direct search methods. Numerical methods for unconstrained optimization, 13-28.
Tavakoli, M., Shokridehaki, F., Akorede, M. F., Marzband, M., 42. 42. Vechiu, I., Pouresmaeil, E. (2018) CVaR-based energy management scheme for optimal resilience and operational cost in commercial building microgrids. International Journal of Electrical Power & Energy Systems, vol. 100, pp.1-9.
43. Tian, P., Wang, H., & Zhang, D. (1995). Nonlinear Integer Programming by Simulated Annealing. IFAC Proceedings Volumes, 28(10), 629-633.
44. Trindade, A. A., Uryasev, S., Shapiro, A., and Zrazhevsky, G. (2007). Financial prediction with constrained tail risk. Journal of Banking and Finance, vol. 31, pp. 3524–3538.
45. Wu, J., Wu, Z., Wu F., Tang, H., Mao, X. (2018). CVaR risk-based optimization framework for renewable energy management in distribution systems with DGs and EVs. Energy, vol. 143, pp. 323-336.
46. Xue, W., Mab, L., Shen, H. (2015). Optimal inventory and hedging decisions with CVaR consideration. International Journal of Production Economics, vol. 162, pp. 70-82
47. Xiao, H., Gao, S., Lee, L. H. (2017). Simulation budget allocation for simultaneously selecting the best and worst subsets. Automatica, pp.117-127.
48. 連福詩. (2015) ‘改進SNM 演算法計算效率以求解實務問題’. 清華大學工業工程與工程管理學系學位論文, pp. 1-42.
49. 林星妤. (2018) ‘目標式為條件期望值之模擬最佳化演算架構’. 清華大學工業工程與工程管理學系學位論文, pp. 1-53.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *