帳號:guest(18.222.7.151)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱庭萱
作者(外文):Chu, Ting-Hsuan
論文名稱(中文):定期班表之收發包裹機器人途程問題研究
論文名稱(外文):A Study of the Routing Problems for Parcel Pickup-Delivery Robots under a Fixed Schedule
指導教授(中文):洪一峯
指導教授(外文):Hung, Yi-Feng
口試委員(中文):吳建瑋
李雨青
口試委員(外文):Wu, Chien-Wei
Lee, Yu-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:106034510
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:31
中文關鍵詞:動態車輛路徑問題時間窗即時容量收貨與送貨混合整數規劃禁忌搜尋法啟發式演算法
外文關鍵詞:Dynamic vehicle routing problemTime windowReal-timeCapacityPickup and deliveryMixed integer programmingTabu searchHeuristics search
相關次數:
  • 推薦推薦:0
  • 點閱點閱:364
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於快遞業的蓬勃發展,本文探討在固定班表下,求解即時的多台收發性機器人途程問題。此機器人具有不同尺寸之格子存放相對應尺寸之包裹,並有乘載數量限制,意即容量,而固定班表中包含硬時間窗資訊,使機器人在該時間前重返大廳且不得延遲。本問題目標在於決定機器人在所有顧客及快遞間運送包裹之服務順序,當顧客每提出一個需求時,系統應評估是否有任何機器人得以在顧客指定之時間窗內完成,藉由啟發式演算法求得起始可行解,接著透過禁忌搜尋法優化途程安排,亦提出一套求解單一時間窗之混合整數規劃模型,對先前已排好之路徑加入新需求,進行最佳化並且回覆顧客。本研究目標為最小化多台收發性機器人之總旅行距離,更同時考量多台機器人數量、多種容量限制、多時間窗、單一中央大廳(倉庫)及不固定顧客收發需求之情況。
Motivated by current trend of flourish express delivery industry, the real-time routing problem for the multiple capacitated pickup and delivery robots under a fixed schedule is investigated in this study. Various sizes of counterparts are used to store corresponding parcels on the robots and the quantity of counterparts is capacity. Besides, the robots are required to return to lobby before hard time windows without any delay. The objective of the problem is to determine the travel sequences for robots transporting parcels between customers and couriers. When a new request arrives, the system have to evaluate if there is a robot can service the customer and return to the lobby before the end of the assigned time cycle. Obtain an initial feasible solution by a heuristic method, and then solve the problem with Tabu search algorithm. A mixed integer programming model is also carried out to optimize the routes of robots and respond to the customers. This study considers the constraints of various capacities and sizes, multi-hard time windows and a central lobby/depot with both pickup and delivery requests made from customers. The objective of this model is to minimize the total travelling distance for multiple robots in multiple time windows.
摘要 i
Abstract ii
圖目錄 v
表目錄 vi
1. 緒論 1
1.1. 研究背景 1
1.2. 研究動機 2
1.3. 問題描述 2
2. 文獻回顧 8
2.1.途程安排問題 8
2.1.1 車輛途程安排問題 8
2.1.2 動態車輛途程安排問題 9
2.2. 啟發式搜尋演算法 10
2.2.1. 禁忌搜尋演算法 11
2.2.2. 模擬退火法 12
2.2.3. 基因演算法 12
3. 研究方法 14
3.1. 搜尋演算法 14
3.1.1 啟發式演算法 14
3.1.2 禁忌搜尋演算法 15
3.2. 混合整數規劃模型 18
4. 實驗設計與結果 22
4.1. 實驗設計 22
4.2. 實驗結果分析 24
5. 結論與未來展望 28
Reference 29

AbdAllah, A. M. F. M., Essam, D. L., & Sarker, R. A. (2017). On solving periodic re-optimization dynamic vehicle routing problems. Applied Soft Computing, 55, 1-12.
Baños, R., Ortega, J., Gil, C., Fernández, A., & de Toro, F. (2013). A Simulated Annealing-based parallel multi-objective approach to vehicle routing problems with time windows. Expert Systems with Applications, 40(5), 1696-1707.
Baker, B. M., & Ayechew, M. A. (2003). A genetic algorithm for the vehicle routing problem. Computers & Operations Research, 30(5), 787-800.
Bullo, F., Frazzoli, E., Pavone, M., Savla, K., & Smith, S. L. (2011). Dynamic Vehicle Routing for Robotic Systems. Proceedings of the IEEE, 99(9), 1482-1504.
Chen, S., Chen, R., Wang, G.-G., Gao, J., & Sangaiah, A. K. (2018). An adaptive large neighborhood search heuristic for dynamic vehicle routing problems. Computers & Electrical Engineering, 67, 596-607.
Gambardella, L. M., Taillard, E., & Agazzi, G. (1999). MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows. Retrieved from
Gendreau, M., Guertin, F., Potvin, J.-Y., & Séguin, R. (2006). Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries. Transportation Research Part C: Emerging Technologies, 14(3), 157-174.
Gendreau, M., Guertin, F., Potvin, J.-Y., & Taillard, É. (1999). Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching. Transportation Science, 33(4), 381-390.
Gendreau, M., Hertz, A., & Laporte, G. (1994). A Tabu Search Heuristic for the Vehicle Routing Problem. Management Science, 40(10), 1276-1290.
Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing, 1(3), 190-206.
Haghani, A., & Jung, S. (2005). A dynamic vehicle routing problem with time-dependent travel times. Computers & Operations Research, 32(11), 2959-2986.
Hanshar, F. T., & Ombuki-Berman, B. M. (2007). Dynamic vehicle routing using genetic algorithms. Applied Intelligence, 27(1), 89-99.
Hung, Y.-F., Chen, W.-C., & Chen, J. C. (2012). Search Algorithms in the Selection of Warehouses and Transshipment Arrangements for High-End Low-Volume Products. Journal of Advanced Engineering, 7(2), 51-60.
Kuo, Y. (2010). Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Computers & Industrial Engineering, 59(1), 157-165.
Lei, B., Zhu, H., & Gningue, Y. (2019). Using Group Role Assignment to Solve Dynamic Vehicle Routing Problem. Paper presented at the 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC).
Maciejewski, M., Bischoff, J., Hörl, S., & Nagel, K. (2017). Towards a Testbed for Dynamic Vehicle Routing Algorithms. Paper presented at the Highlights of Practical Applications of Cyber-Physical Multi-Agent Systems, Cham.
Montemanni, R., Gambardella, L. M., Rizzoli, A. E., & Donati, A. V. (2005). Ant Colony System for a Dynamic Vehicle Routing Problem. Journal of Combinatorial Optimization, 10(4), 327-343.
Ombuki, B., Ross, B. J., & Hanshar, F. (2006). Multi-Objective Genetic Algorithms for Vehicle Routing Problem with Time Windows. Applied Intelligence, 24(1), 17-30.
Potvin, J.-Y., & Bengio, S. (1996). The Vehicle Routing Problem with Time Windows Part II: Genetic Search. INFORMS Journal on Computing, 8(2), 165-172.
Taillard, É., Badeau, P., Gendreau, M., Guertin, F., & Potvin, J.-Y. (1997). A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows. Transportation Science, 31(2), 170-186.
Tavakkoli-Moghaddam, R., Safaei, N., & Gholipour, Y. (2006). A hybrid simulated annealing for capacitated vehicle routing problems with the independent route length. Applied Mathematics and Computation, 176(2), 445-454.
Tsubakitani, S., & Evans, J. R. (1998). Optimizing tabu list size for the traveling salesman problem. Computers & Operations Research, 25(2), 91-97.
Yagiura, M., Ibaraki, T., & Glover, F. (2004). An Ejection Chain Approach for the Generalized Assignment Problem. INFORMS Journal on Computing, 16(2), 133-151.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *