|
[1] A. Rodriguez, A. Laio. (2014) Clustering by fast search and find of density peaks, Science 344, pp 1492-1496 [2] Berkhin P. (2006) A Survey of Clustering Data Mining Techniques. In: Kogan J., Nicholas C., Teboulle M. (eds) Grouping Multidimensional Data. Springer, Berlin, Heidelberg. pp 25-71 [3] Edwin Lughofer. (2012) A dynamic split-and-merge approach for evolving cluster models. Evolving Systems. pp 135-151 [4] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Edouard Duchesnay. (2011) Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12. pp 2825-2830 [5] G. Karypis, Eui-Hong Han, V. Kumar. (1999) Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8). pp 68-75 [6] Jing Gao, Liang Zhao, Zhikui Chen, Peng Li, Han Xu, Yueming Hu. (2016) ICFS: An Improved Fast Search and Find of Density Peaks Clustering Algorithm. IEEE 14th Intl Conf on DASC, 14th Intl Conf on PiCom, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress. [7] J. MacQueen. (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, Berkeley, Calif. University of California Press. pp 281-297 [8] L. Kaufman, P.J. Rousseeuw. (1990) Finding Groups in Data: an introduction to cluster analysis. Wiley. [9] M. Ankerst, M. M. Breunig, H.-P. Kriegel, J. Sander. (1999) OPTICS: Ordering Points to Identify the Clustering Structure. In Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'99). pp 49-60. [10] Mark de Berg, Ade Gunawan, Marcel Roeloffzen. (2017) Faster DBScan and HDBScan in Low-Dimensional Euclidean Spaces. 28th International Symposium on Algorithms and Computation (ISAAC 2017) [11] Mingjing Du, Shifei Ding, Hongjie Jia. (2016) Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowledge-Based Systems Volume 99, pp 135-145 [12] M. Ester, H.-P. Kriegel, J. Sander, X. Xu. (1996) A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining. pp 226-231 [13] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, Teh Ying Wah. (2015) Time-series clustering—A decade review. Information Systems, Volume 53, pp 16-38
|