帳號:guest(18.191.210.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王偉誠
作者(外文):Wang, Wei-Cheng
論文名稱(中文):複合式環境中基於任務導向之移動機器人路徑搜索及運動規劃
論文名稱(外文):Task-Oriented Route Searching and Motion Coordination for Mobile Robots in Composite Environments
指導教授(中文):陳榮順
指導教授(外文):Chen, Rong-Shun
口試委員(中文):張禎元
陳宗麟
李志鴻
黃浚鋒
口試委員(外文):Chang, Jen-Yuan
Chen, Tsung-Lin
Li, Chih-Hung
Huang, Chun-Feng
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:106033853
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:151
中文關鍵詞:多機器人任務分配路徑搜索運動規劃避障
外文關鍵詞:Multi-robotTask AllocationRoute SearchingMotion CoordinationObstacle Avoidance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:231
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
移動機器人被廣泛用於許多產業,甚至如軍事工程、太空探勘、醫療照護及生活服務等應用。然而移動機器人的應用中仍會存在諸如任務分配、路徑搜索與運動規劃等問題。因此,本研究分為三個階段,研發解決上述問題之方案。第一階段開發一種合作式避障的運動規劃演算法,可引導所有機器人前往各自的任務區域開始執行任務。第二階段進行機器人的任務規劃,提出預聚類貪婪啟發式的混合方法,先不考慮避障功能,預規劃一條近似最佳解的閉合路徑以執行所有任務點。最後,於第三階段時,若任兩個任務點之間出現障礙物,每台機器人可應用本研究所提之多目標規劃基因演算法,以避開環境障礙物。本研究提出的系統化方法講究實際執行時的運算效率,兼用中心化的主控電腦及部署於各台機器人上的嵌入式系統,使得整體多機器人系統能在有限的續航時間內儘可能完成大量執行目標。由所有階段的模擬及實驗結果可顯示本研究成果可有效解決複數台移動機器人執行眾多任務時的避障及運動規劃問題。
Mobile robots have been widely employed to many industries, even for the applications such as military engineering, space exploration, medical care, life service, etc. However, among the researches in the multi-robot systems, there still exist several fundamental topics, including the task allocation, route searching and motion planning. Therefore, this work proposes a three-stage solution to concentrate on the abovementioned topics. Firstly, all robots are navigated to their corresponding regions for task execution, by employing the proposed motion planning that combines the algorithms of the informed search, the cooperative evading strategy and the deadlock intervener. Next, the task allocation is developed for each robot by hybridizing the pre-clustering and greedy heuristic. At the final stage, if there exist obstacles between any two successive tasks, each robot can search the collision-free route to execute the required tasks using the multi-objective evolutionary algorithm based on the genetic algorithm. Considering that robots have to execute all demanded tasks under limited time and computation power, the computing efficiency of this work is proved by binding the schemes of a centralized computer and an embedded system on each robot. Both of the simulation and experimental results show that this work can efficiently solve the motion planning, task allocation and route searching for multiple mobile robots within tractable time.
論文摘要 ......................................................I
Abstract .......................................................II
Acknowledgements ..............................................III
Table of Contents ..............................................IV
List of Figures ..............................................VIII
List of Tables ...............................................XIII
Nomenclature ..................................................XIV
Chapter 1 Introduction ..........................................1
1.1 Background and Motivation ................................1
1.2 Literature Review ...................................3
1.2.1 Task Allocation for Multiple Robots ....................3
1.2.2 Route Searching for a Single Robot .....................8
1.2.3 Motion Coordination for Multiple Agents ...............11
1.3 Contribution ............................................17
1.4 Organization of this Dissertation .......................18
Chapter 2 Problem Overview .....................................19
2.1 Terminology .............................................19
2.1.1 Agents and Robots .....................................19
2.1.2 Actuators and Sensors .................................20
2.1.3 Composite Environment .................................20
2.1.4 Constraints ...........................................21
2.1.5 Task Allocation .......................................21
2.1.6 Route Searching .......................................22
2.1.7 Motion Planning .......................................23
2.1.8 Centralized and Decentralized Schemes .................24
2.2 Problem Definition ......................................24
2.2.1 Kinematic Modeling for the Mobile Robot ...............26
2.2.2 Task Allocation for Multiple Robots ...................28
2.2.3 Single-Robot Route Searching ..........................29
2.2.4 Multi-Agent Motion Coordination .......................29
Chapter 3 Task Allocation for Multiple Robots ..................31
3.1 Formulation .............................................31
3.2 Pre-Clustering and Construction Method ..................33
3.2.1 Pre-Clustering ........................................34
3.2.2 Construction Method ...................................36
3.3 Variants of Greedy Heuristics ...........................38
3.3.1 Entire Greedy Heuristic (EG) ..........................39
3.3.2 Binary Greedy Heuristic (BG) ..........................40
3.3.3 Recursive Greedy Heuristic (RG) .......................42
3.4 Results and Discussion ..................................44
3.4.1 Environment Setup .....................................44
3.4.2 Demonstration..........................................44
3.4.3 Evaluation and Discussion..............................48
Chapter 4 Single-Robot Route Searching .........................54
4.1 Formulation .............................................54
4.1.1 Environment Description ...............................54
4.1.2 Mathematical Modeling .................................55
4.2 Methodology .............................................59
4.2.1 Representation of the Solution ........................62
4.2.2 Parent Selection ......................................63
4.2.3 Crossover Operator ....................................64
4.2.4 Mutation Operator .....................................65
4.2.5 Survivor Selection ....................................66
4.3 Parameter Determination .................................67
4.4 Realization .............................................72
4.4.1 System Architecture ...................................72
4.4.2 Obstacle Localization by the ArUco System .............76
4.4.3 Path Tracker ..........................................79
4.5 Results and Discussion ..................................82
4.5.1 Experimental Results ..................................82
4.5.2 Discussion ............................................87
Chapter 5 Multi-Agent Motion Coordination ......................89
5.1 Formulation .............................................89
5.1.1 Global Configuration ..................................89
5.1.2 Constraints and Mathematical Modeling .................90
5.1.3 Evaluation Metrics ....................................93
5.2 Methodology .............................................93
5.2.1 Global Path Planner with the Reformable-A*.............96
5.2.2 Extended ORCA for the Locomotion Planning .............99
5.2.3 Intervention in Deadlocks ............................107
5.2.4 Complexity Analysis ..................................113
5.3 Results and Discussion .................................115
5.3.1 Maps and Scenarios ...................................116
5.3.2 Parameter Determination ..............................118
5.3.3 Behavioral Demonstration .............................120
5.3.4 Performance Evaluation ...............................123
5.3.5 Experimental Results .................................127
5.3.6 Discussion ...........................................134
Chapter 6 Conclusions and Future Works ........................137
6.1 Conclusions ............................................137
6.2 Future Works ...........................................139
References ....................................................140
[1] L. Prevost, “A Time for Robots to Shine, or Even Disinfect,” The New York Times (August 5, 2020), Accessed January 10, 2021. https://www.nytimes.com/2020/08/04/business/robot-cleaning-coronavirus.html.
[2] G.-Z. Yang, B. J. Nelson, R. R. Murphy, H. Choset, H. Christensen, S. H. Collins, P. Dario, K. Goldberg, K. Ikuta, N. Jacobstein, D. Kragic, R. H. Taylor, and M. McNutt, “Combating COVID-19--The role of robotics in managing public health and infectious,” Science Robotics, vol. 5, no. 40, pp. 1–2, 2020.
[3] S. G. Tzafestas, Introduction to mobile robot control, Elsevier, 2013.
[4] E. Kagan, N. Shvalb, and I. Ben-Gal, “Autonomous Mobile Robots and Multi-Robot Systems,” in Motion-Planning, Communication, and Swarming, John Wiley & Sons, 2019.
[5] H. Jahanshahi and N. N. Sari., “Robot path planning algorithms: a review of theory and experiment,” in arXiv preprint, arXiv:1805.08137v3, 2018.
[6] K. Holmqvist, A. Migdalas, and P. M. Pardalos, “Parallel continuous non-convex optimization,” in Parallel Computing in Optimization. Applied Optimization, vol. 7, pp. 471–527, 1997.
[7] G. Gutin and A. P. Punnen, The traveling salesman problem and its variations, Boston MA: Springer, 2002.
[8] D. S. Johnson and L. A. McGeoch, “Experimental analysis of heuristics for the STSP,” in The traveling salesman problem and its variations, pp. 369-443, Berlin, Germany, Springer, 2007.
[9] D. Applegate and W. Cook, “Solving large-scale matching problems,” in DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 12, pp. 557–576, 1993.
[10] J. R. Allwright and D. B. Carpenter, “A distributed implementation of simulated annealing for the travelling salesman problem,” in Parallel Computing. Theory and Applications, vol. 10, no. 3, pp. 335–338, 1989.
[11] A. Schrijver, “Combinatorial Optimization,” in Polyhedra and Efficiency, Berlin Heidelberg: Springer-Verlag, 2003.
[12] J. Giesen, “Curve reconstruction, the traveling salesman problem, and menger's theorem on length,” Discrete & Computational Geometry, vol. 24, pp. 577–603, 2000.
[13] H. Abdulkarim and I. F. Alshammari, “Comparison of algorithms for solving traveling salesman problem,” International Journal of Engineering and Advanced Technology, 2015.
[14] R. Bellman, Combinatorial processes and dynamic programming, Santa Monica, Calif.: RAND Corporation., 1958.
[15] R. Bellman, “Dynamic programming treatment of the travelling salesman problem,” Journal of the Association for Computing Machinery, vol. 9, no. 1, pp. 61–63, 1962.
[16] M. Held and R. M. Karp, “A dynamic programming approach to sequencing problems,” Journal of the Society of Industrial and Applied Mathematics, vol. 10, pp. 196–210, 1962.
[17] E. L. Lawler, The Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons, 1985.
[18] G. Laporte, “The traveling salesman problem: an overview of exact and approximate algorithms,” European Journal of Operational Research, vol. 59, no.2, pp. 231–247, 1992.
[19] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.
[20] J. H. Holland, Adaptation in Natural and Artificial Systems, Michigan: The University of Michigan Press, 1975.
[21] J. Y. Potvin, “Genetic algorithms for the traveling salesman problem,” Annals of Operations Research, vol. 63, pp. 339–370, 1996.
[22] J. Beardwood, J. H. Halton, and J. M. Hammersley, “The shortest path through many points,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 55, no. 4, pp. 299–327, 1959.
[23] R. M. Karp and J. M. Steele, “Probabilistic analysis of heuristics,” in The Traveling Salesman Problem, pp. 181–205, John Wiley & Sons, 1985.
[24] D. S. Johnson, L. A. McGeoch, and E. E. Rothberg, “Asymptotic experimental analysis for the held-karp traveling salesman bound,” in Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 341–350, Atlanta, USA, January 28–30, 1996.
[25] B. I. Selamoglu, A. Salhi, and M. Sulaiman, “Strip algorithms as an efficient way to initialise population-based metaheuristics,” in Recent Developments in Metaheuristics, pp. 319–331, Springer, 2017.
[26] J. J. Bentley, “Fast algorithms for geometric traveling salesman problems,” ORSA Journal on Computing, vol. 4, no. 4, pp. 387–411, 1992.
[27] L. K. Platzman and I. Bartholdi, “Spacefilling curves and the planar travelling salesman problem,” Journal of the ACM, vol. 36, no. 4, pp. 719–737, 1989.
[28] P. L’Ecuyera, D. Mungerb, C. L ́ecotc, and B. Tuffind, “Sorting methods and convergence rates for Array-RQMC: Some empirical comparisons,” Mathematics and Computers in Simulation, vol. 143, pp. 191–201, 2019.
[29] R. M. Karp, “Probabilistic analysis of partitioning algorithms for the traveling-salesman problem in the plane,” Mathematics of Operations Research, vol. 2, no. 3, pp. 209–224, 1977.
[30] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.
[31] C. K. Yap, “Algorithmic motion planning,” in Advances in robotics: Algorithmic and geometric issues, vol. 1, pp. 95–143, 1987.
[32] J. C. Latombe, Robot Motion Planning, Norwell, MA: Kluwer Academic Publishing, 1991.
[33] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
[34] A. Stentz, “Optimal and efficient path planning for partially-known environments,” in Proceedings of the 1994 IEEE International Conference on Robotics and Automation, vol. 4, San Diego, USA, May 8–13, pp. 3310–3317, 1994.
[35] S. Koenig and M. Likhachev, “Incremental A*,” Advances in Neural Information Processing Systems, vol. 14, pp. 1539–1546, Vancouver, Canada, December 3–8, 2001.
[36] L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, no.5, pp. 338–353, 1965.
[37] A. Martinez, E. Tunstel, and M. Jamshidi, “Fuzzy logic based collision avoidance for a mobile robot,” Robotica, vol. 12, no. 6, pp. 521–527, 1994.
[38] D. K. Pratihar, K. Deb, and A. Ghosh, “Fuzzy-genetic algorithms and mobile robot navigation among static obstacles,” in Proceedings of the 1999 Congress on Evolutionary Computation, vol. 1, pp. 327–334, Washington, USA, July 6–9, 1999.
[39] C. T. C. Arsene and A. M. S. Zalzala, “Control of autonomous robots using fuzzy logic controllers tuned by genetic algorithms,” in Proceedings of the 1999 Congress on Evolutionary Computation, vol. 1, pp. 428–435, Washington, USA, July 6–9, 1999.
[40] J. A. Driscoll and R. A. Peters II, “A development environment for evolutionary robotics,” in IEEE international conference on systems, man and cybernetics, vol. 5, pp. 3841–3845, Nashville, USA, October 8–11, 2000.
[41] K. Deb, “Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction,” in Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 3–34, Springer, London, 2011.
[42] H. Monsef, M. Naghashzadegan, A. Jamali, and R. Farmani, “Comparison of evolutionary multi objective optimization algorithms in optimum design of water distribution network,” Ain Shams Engineering Journal, vol. 10, no. 1, pp. 103–111, 2019.
[43] M. Song and D. Chen, “A comparison of three heuristic optimization algorithms for solving the multi-objective land allocation (MOLA) problem,” Annals of GIS, vol. 24, no. 1, pp. 19–31, 2018.
[44] W. Chen, J. Zhang, H. Chung, W. Zhong, W. Wu, and Y. Shi, “A novel set-based particle swarm optimization method for discrete optimization problems,” IEEE Transactions on Evolutionary Computation, vol. 14, pp. 278–300, 2010.
[45] J. Kennedy and R. Eberhart, “A discrete binary version of the particle swarm algorithm,” in IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4104–4108, Orlando, USA, October 12–15, 1997.
[46] C. W. Chuang, “A novel pseudo-model following integral variable structure control for vision feedback autonomous mobile robots,” in Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 222, no. 1, pp. 13–23, 2008.
[47] D. Amarasinghe, G. K. I. Mann, and R. G. Gosine, “Vision-based hybrid control scheme for autonomous parking of a mobile robot,” Advanced Robotics, vol. 21, pp. 905–930, 2007.
[48] C. H. Yun, Y. Moon, and N. Y. Ko, “Vision based navigation for golf ball collecting mobile robot,” in 13th International Conference on Control, Automation and Systems, pp. 201–203, Gwangju, Korea, October 20–23, 2013.
[49] A. R. Romero, P. V. Koerich Borges, A. Elfes, and A. Pfrunder, “Environment-aware sensor fusion for obstacle detection,” IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 114–121, Baden-Baden, Germany, September 19–21, 2016.
[50] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez, “Automatic generation and detection of highly reliable fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–2292, 2014.
[51] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and R. Medina-Carnicer, “Generation of fiducial marker dictionaries using mixed integer linear programming,” Pattern Recognition, vol. 51, pp. 481-491, 2016.
[52] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer, “Speeded up detection of squared fiducial markers,” Image and Vision Computing, vol. 76, pp. 38–47, 2018.
[53] B. Xing, Q. Zhu, F. Pan, and X. Feng, “Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles,” Sensors, vol. 18, pp. 1706–1724, 2018.
[54] F. Sonnleitner, R. Shu, and R. L. Hollis, “The Mechanics and Control of Leaning to Lift Heavy Objects with a Dynamically Stable Mobile Robot,” in International Conference on Robotics and Automation, pp. 9264–9270, Montreal, Canada, May 20–24, 2019.
[55] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li, D. Atzmon, L. Cohen, T. K. Satish Kumar, E. Boyarski, and R. Bartak, “Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks,” in Proceedings of the 12th International Symposium on Combinatorial Search, Napa, USA, July 16–17, 2019.
[56] P. Xuan and V. Lesser, “Multi-agent policies: from centralized ones to decentralized ones,” in Proceedings of the first international joint conference on Autonomous agents and multiagent systems: part 3, pp. 1098–1105, Bologna, Italy, July 15–19, 2002.
[57] D. Dimarogonas and K. Kyriakopoulos, “Decentralized Navigation Functions for Multiple Robotic Agents with Limited Sensing Capabilities,” Journal of Intelligent and Robotic Systems, vol. 48, pp. 411–433, 2007.
[58] K. H. C. Wang and A. Botea, “MAPP: a scalable multi-agent path planning algorithm with tractability and completeness guarantees,” Journal of Artificial Intelligence Research, vol. 42, no. 1, pp. 55–90, 2011.
[59] S. Dergachev, K. Yakovlev, and R. Prakapovich, “A Combination of Theta*, ORCA and Push and Rotate for Multi-agent Navigation,” in arXiv preprint, arXiv:2008.01227v1, 2020.
[60] R. Jansen and N. Sturtevant, “A new approach to cooperative pathfinding,” in Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems, vol. 3, pp. 1401–1404, Estoril, Portugal, 2008.
[61] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and Path Planning for Multi-Agent Pickup and Delivery,” in Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1152–1160, Montreal QC, Canada, 2019.
[62] M. Ryan, “Constraint-based multi-robot path planning,” in 2010 IEEE International Conference on Robotics and Automation, pp. 922–928, Anchorage, USA, May 3–7, 2010.
[63] P. Surynek, J. Švancara, A. Felner, and E. Boyarski, “Integration of Independence Detection into SAT-based Optimal Multi-Agent Path Finding - A Novel SAT-based Optimal MAPF Solver,” in Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART), pp. 85–95, Porto, Portugal, February 24–26, 2017.
[64] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for optimal multi-agent pathfinding,” Artificial Intelligence, vol. 219, pp. 40–66, 2015.
[65] M. Čáp, P. Novák, J. Vokřínek, and M. Pěchouček, “Multi-agent RRT*: Sampling-based Cooperative Pathfinding,” in Proceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2013), pp. 1263–1264, St. Paul, USA, May 6–10, 2013.
[66] Y. Li, Y. Li, Y. Guo, and K. Cai, “Cooperative Path Planning of Robot Swarm Based on ACO,” in Proceedings of 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference, pp. 1428–1432, Chengdu, China, December 15–17, 2017.
[67] M. Čáp, P. Novák, A. Kleiner, and M. Selecký, “Prioritized Planning Algorithms for Trajectory Coordination of Multiple Mobile Robots,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 3, pp. 835–849, 2015.
[68] K. Yakovlev, A. Andreychuk, and V. Vorobyev, “Prioritized Multi-agent Path Finding for Differential Drive Robots,” in 2019 European Conference on Mobile Robots (ECMR), pp. 1–6, Prague, Czech Republic, September 4–6, 2019.
[69] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.
[70] S. Karaman and E. Frazzoli, “Sampling-Based Algorithms for Optimal Motion Planning,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.
[71] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle path planning on grids,” Journal of Artificial Intelligence Research, vo1. 39, pp. 533–579, 2010.
[72] C. S. Tan, R. Mohd-Mokhtar, and M. R. Arshad, “A Comprehensive Review of Coverage Path Planning in Robotics Using Classical and Heuristic Algorithms,” IEEE Access, vol. 9, pp. 119310–119342, 2021.
[73] J. Braun, T. Brito, J. Lima, P. Costa, P. Costa, and A. Nakano, “A Comparison of A* and RRT* Algorithms with Dynamic and Real Time Constraint Scenarios for Mobile Robots,” in Proceedings of the 9th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2019), pp. 398–405, Prague, Czech Republic, July 29–31, 2019.
[74] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles,” The International Journal of Robotics Research, vol. 17, no. 7, pp. 760–772, 1998.
[75] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-time multi-agent navigation,” in Proceedings of the International Conference on Robotics and Automation (ICRA), pp. 1928–1935, Pasadena, USA, May 19–23, 2008.
[76] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha, “The hybrid reciprocal velocity obstacle,” Transactions on Robotics, vo1. 27, no. 4, pp. 696–706, 2011.
[77] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-Body Collision Avoidance,” in Robotics Research, Series in Springer Tracts in Advanced Robotics, vol. 70, pp. 3–19, Berlin Heidelberg: Springer-Verlag, 2011.
[78] J. Snape, S. J. Guy, J. van den Berg, and D. Manocha, “Smooth Coordination and Navigation for Multiple Differential-Drive Robots, in Experimental Robotics,” in The 12th International Symposium on Experimental Robotics, pp. 601–613, New Delhi and Agra, India, December 18–21, 2014.
[79] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,” The International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.
[80] A. Bakdi, A. Hentout, H. Boutami, A. Maoudj, O. Hachour, and B. Bouzouia, “Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control,” Robotics and Autonomous Systems, vo1. 89, pp. 95–109, 2017.
[81] L. Wang, J. Guo, Q. Wang, and J. Kan, “Ground Robot Path Planning Based on Simulated Annealing Genetic Algorithm,” 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), pp. 417–4177, Chengdu, China, October 18–20, 2018.
[82] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 285–292, Marina Bay Sands, Singapore, May 29 – June 3, 2017.
[83] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 6252–6259, Brisbane, Australia, May 21–26, 2018.
[84] Y. Dong and X. Zou, “Mobile Robot Path Planning Based on Improved DDPG Reinforcement Learning Algorithm,” in 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, October 16–18, 2020.
[85] K. Cai, C. Wang, J. Cheng, C. W. De Silva, and M. Q.-H. Meng, “Mobile Robot Path Planning in Dynamic Environments: A Survey,” arXiv preprint, article no. arXiv:2006.14195, 2020.
[86] M. M. Gulzar, S. Ahmed, D. Sibtain, M. Iqbal, M. Y. Javed, and S. T. H. Rizvi, “Environment Based Optimal Path Planning Realization for Autonomous Agents,” in 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pp. 1–6, Swat, Pakistan, July 24–25, 2019.
[87] B. Basbous, “2D UAV Path Planning with Radar Threatening Areas using Simulated Annealing Algorithm for Event Detection,” in 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), pp. 1–7, Malatya, Turkey, September 28–30, 2018.
[88] J. A. Douthwaite, S. Zhao, and L. S. Mihaylova, “Velocity Obstacle Approaches for Multi-Agent Collision Avoidance,” Unmanned Systems, vol. 7, no. 1, pp. 55–64, 2019.
[89] K.-T. Song and Y.-X. Sun, “Coordinating multiple mobile robots for obstacle avoidance using cloud computing,” Asian J Control., no. 23, pp. 1225–1236, 2021.
[90] R. Mao, H. Gao, and L. Guo, “A Novel Collision-Free Navigation Approach for Multiple Nonholonomic Robots Based on ORCA and Linear MPC,” Mathematical Problems in Engineering, vol. 2020, article no. 4183427, 2020.
[91] G. Weiss, “Intelligent Agents,” in Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, Cambridge, MA, USA: MIT Press, 2000.
[92] G. Ayorkor Korsah, A. Stentz, and M. Bernardine Dias, “A Comprehensive Taxonomy for Multi-Robot Task Allocation,” The International Journal of Robotics Research, vol. 32, no. 12, pp. 1495–1512, 2013.
[93] L. Kaufman and P. J. Rousseeuw, “Finding Groups in Data,” in An Introduction to Cluster Analysis, New York: John Wiley & Sons, 1990.
[94] A. K. Jain, P. W. Duin, and J. Mao, “Statistical pattern recognition: a review,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 4–37, 2000.
[95] K. Wagstaff and C. Cardie, “Constrained k-means clustering with background knowledge,” in Proceedings of the Eighteenth International Conference on Machine Learning, pp. 577–584, San Francisco, USA, June 28–July 1, 2001.
[96] Discrete and Combinatorial Optimization, http://comopt.ifi.uni-heidelberg.de/, Accessed June 12, 2020.
[97] X. Zhanga, A. Linigerb, and F. Borrellia, “Optimization-Based Collision Avoidance,” in arXiv preprint, arXiv: 1711.03449v3, 2018.
[98] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.
[99] O. al jaddan, L. Rajamani, and C. R. Rao, “Improved Selection Operator for GA,” Journal of Theoretical and Applied Information Technology, pp. 269-277, 2005.
[100] Robot operating system, http://www.ros.org/, Accessed April 30, 2020.
[101] A. Morar, A. Moldoveanu, I. Mocanu, F. Moldoveanu, I. E. Radoi, V. Asavei, A. Gradinaru, and A. Butean, “A Comprehensive Survey of Indoor Localization Methods Based on Computer Vision,” Sensors, vol. 20, no. 9, article no. 2641, 2020.
[102] A. Zakiev, T. Tsoy, K. Shabalina, E. Magid, and S. K. Saha, “Virtual Experiments on ArUco and AprilTag Systems Comparison for Fiducial Marker Rotation Resistance under Noisy Sensory Data,” in International Joint Conference on Neural Networks (IJCNN), pp. 1–6, Glasgow, UK, 2020.
[103] O. Amidi, “Integrated mobile robot control,” report no. CMU-RI-TR-90-17, Carnegie Mellon University, Pittsburgh, PA, 1990.
[104] R. Craig Coulter, “Implementation of the Pure Pursuit Path Tracking Algorithm,” report no. CMU-RI-TR-92-01, Carnegie Mellon University, Pittsburgh, PA, 1992.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *