帳號:guest(18.118.19.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):余岱原
作者(外文):Yu, Tai-Yuan
論文名稱(中文):基於多物理三維電腦輔助工程分析法於氣體箔片軸承之動態特性模擬及驗證
論文名稱(外文):SIMULATION AND VERIFICATION OF DYNAMIC CHARACTERISTICS OF GAS FOIL BEARINGS BASED ON MULTI-PHYSICS THREE-DIMENSIONAL COMPUTER AIDED ENGINEERING METHODS
指導教授(中文):王培仁
指導教授(外文):Wang, Pei-Jen
口試委員(中文):蔣小偉
陳玉彬
成維華
許政行
口試委員(外文):Chiang, Hsiao-Wei
Chen, Yu-Bin
Chieng, Wei-Hua
Hsu, Cheng-Hsing
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:106033814
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:97
中文關鍵詞:氣體箔片軸承電腦輔助工程流固耦合
外文關鍵詞:Gas foil bearingComputer Aided EngineeringFluid-Structure Interaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:4
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來無油高速轉子系統對於符合環保之發電系統至為重要,故而在系 統上均採用氣體箔片軸承以支撐高速轉子是關鍵核心技術。這類軸承在運轉過程無須使用潤滑油及相關輔助系統,主要研究是源起於二十世紀之70年代,而後應用於航空業之輔助動力裝置及空氣循環機。這類軸承技術發展至今日,對於軸承運轉之動態工作特性尚未完全解析;舉例而言,軸承內部氣膜壓力及溫度分佈情形,甚而於各種工作條件能有效進行軸承之熱管理方法,都是待深入分析探討。本論文先參酌文獻回顧之有限設計及運轉參數資料,在確定流程後進行全面性分析及研究,對這類型軸承之設計及運轉相關理論深入理解,發展出先進熱管理方式,期望實現軸承動態性能之最佳化設計。本論文提出採用基於多物理場三維電腦輔助有限元素分析法之暫態數值分析模型, 經由計算流體力學與結構力學之聯合分析模組之流固耦合方式, 建構出模擬軸向及徑向之氣體箔片軸承之動態運行數值模型。以不同邊界及起始條件輸入模型,並持續計算分析達到準穩態情形,從分析過程之各項儲存物理量,可完整探討此軸承之動態特性。因為採用商用套裝軟體進行分析模擬,必須簡化各項複雜物理現象以提升計算效率,故以薄板理論簡化箔片結構並將其設定為均質線性彈性體,便於以設計參數分析及調配完整軸承薄片及轉子之運轉動態特性。在採用實驗設計進行驗證徑向及軸向軸承之分析後,再將實驗結果與文獻發表之數據交叉比對,本論文建構之分析方式對探討氣體箔片軸承之設計及動態運轉特性確為有效方法,並對這類軸承系統之設計及調配運轉參數具可直接應用,並拓展相關高速氣動領域之未來研究方向。
In recent years, oil-free high-speed rotor systems are considered crucial for eco-friendly power generation systems, contributing to the progress of gas foil bearings into an essential technology. These bearings eliminate the needs for lubricating oil and related components during operation. The development of relevant technology gained momentum in the 1970s, especially in aeronautical applications as auxiliary power units and air cycle machines. However, pertinent operational characteristics of these bearings remain mysterious in many ways, for example, the distribution of pressure and temperature field in the thin gas film and the efficient methods of thermal management during various operating conditions. Based on the literatures review relevant to the finite element method and design parameters, the dissertation determines to conduct thorough and comprehensive analysis of the bearings. Furthermore, the advanced thermal management method could also be theorized and modelled after the completion of dynamic analysis. Initially, a comprehensive three-dimensional analysis model employing the fluid-structure interactive finite element method is introduced for the simulation of the operational performance of gas foil bearings. The simulation model is established by cooperating the computational fluid dynamics with the transient mechanical stress calculation via data-transferring co-simulation. With this simulation model, it is possible to examine the working characteristics and performance of the bearing system by conducting the timewise transient analysis in steps until the quasi steady state is reached. As a result, the details in the simulation depict both the physical phenomena and the working characteristics of the bearings. To simplify the simulation process by using the commercial CAE program, the foil structure of the bearings can be treated as a homogeneous solid material according to the plate and shell theory in elasticity. Therefore, the analysis and comparisons of the operational properties among various design of gas foil bearings can illustrate the operational characteristics. To verify the simulated results from the simulation model, comprehensive insights of the dynamic operational characteristics of the gas foil bearings are significant. Hence, the simulation model demonstrates to possibilities in seeking for deeper understanding of the design parameters and operational characteristics of the gas foil bearings. In conclusion, through the in-house experimental measurements on both radial and thrust gas foil bearings and data from the literatures, the verification of the dynamic efficacy of the simulation model have been confirmed. As a result, it is evident that a digital twin analysis model for gas foil bearing systems is very promising in the future development. This innovative study provides notable potential in enhancing fundamental basic knowledge, comprehending theory and conducting analysis of the bearing systems; hence, similar high speed rational aerodynamic studies are explorable in the future.
TABLE OF CONTENTS
摘 要
ABSTRACT
ACKNOWLEDGEMENT
TABLE OF CONTENTS………………………………………………………Ⅰ
LIST OF TABLES AND FIGURES…………………………………………Ⅲ
NOMENCLATURES AND NOTATIONS…………………………………Ⅶ
CHAPTER 1 INTRODUCTION TO GAS FOIL BEARINGS…………………1
1.1 Background of Study and Motivation ……………………………………1
1.2 Literature Review ………………………………………………………4
1.3 Objectives of Study ……………………………………………………18
CHAPTER 2 HYDRODYNAMICS AND SOLID ELASTICITY ……………23
2.1 Hydrodynamics in Lubircation Theory ………………………………23
2.2 Plate and Shell Elasticity in Solid Mechanics …………………………25
2.3 Governing Equations in Radial Operation of GFBs ……………………27
2.4 Concluding Remarks …………………………………………………30
CHAPTER 3 HYDRODYNAMIC MODEL IN CAE SIMULATION………33
3.1 CAE Flow Simulation and Geometric Model of GFBs ………………33
3.1.1 Gas Properties and Boundary Conditions ………………………34
3.2 Meshing of Elements and Bench Mark Simulations ……………………36
3.3 Basic Geometric Model of GFTBs ……………………………………39
3.4 Model Meshing and Boundary Conditions ……………………………42
3.5 Experimental Verifications of the GRTBs ……………………………44
CHAPTER 4 CAE MODEL WITH FLUID-STRUCTURE INTERACTIONS …………………………………………………………………………………54
4.1 Interactions of Fluid and Structure in Radial Operation GFBs …………59
4.2 Interactions of Fluid and Structure in Axial Operation GFTBs ………59
4.3 Concluding Remarks ……………………………………………………62
CHAPTER 5 FULL-MODEL CAE TRANSIENT SIMULATION …………69
5.1 Simulation Cases for Radial Operation GFBs …………………………69
5.2 Simulation Cases for Axial Operation GFTBs …………………………74
5.3 Spring-damper Case for Clamped-Rotor Axial Operation of GFTBs …79
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS …………………90
6.1 Conclusions ……………………………………………………………90
6.2 Future Works ………………………………………………………92
BIBLIOGRAPHY……………………………………………………………94

[1] Dellacorte C., “Oil-Free Shaft Support System Rotordynamics: Past, Present, and Future Challenges and Opportunities”, NASA Technical Report, 2011, No. NASA TM-2011-217003.
[2] Agrawal G., L., “Foil Air/Gas Bearing Technology-An Overview,” ASME Paper, 1997, No. 97-GT-347.
[3] Ku C.-P., Heshmat H., “Compliant Foil Bearing Structural Stiffness Analysis: Part I-Theoretical Model Including Strip and Variable Bump Foil Geometry.” ASME J. Tribol.,1992, 114, pp. 394–400.
[4] DellaCorte C., Valco M. J., “Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbo-Machinery Applications.” STLE Tribol. Trans., 2000, 43, pp. 795–801.
[5] Peng J. P., Carpino M., “Calculation of Stiffness and Damping Coefficients for Elastically Supported Gas Foil Bearings,” ASME J. Tribol., 1993, 115, pp. 20–27.
[6] Peng Z.-C., Khonsari M., “A Thermohydrodynamic Analysis of Foil Journal Bearings,” ASME J. Tribol., 2006, 128, pp. 534–541.
[7] San Andrés L.; Kim T. H., “Computational Analysis of Gas Foil Bearings Integrating 1D and 2D Finite Element Models for Top Foil,” Turbomachinery Laboratory, Texas A&M University, 2006, Technical Report No. TRCB&C-1–06.
[8] Carpino M., Talmage G., “A Fully Coupled Finite Element Formulation for Elastically Supported Foil Journal Bearings,” STLE Tribol. Trans., 2003, 46, pp. 560–565.
[9] Carpino M., Talmage G., “Prediction of Rotor Dynamic Coefficients in Gas Lubricated Foil Journal Bearings With Corrugated Sub-Foils,” STLE Tribol. Trans., 2006, 49, pp. 400–409.
[10] Song J., Kim D., “Foil Bearing With Compression Springs: Analyses and Experiments,” ASME J. Tribol., 2007, 129, pp. 628–639.
[11] Kim D., “Parametric Studies on Static and Dynamic Performance of Air Foil Bearings with Different Top Foil Geometries and Bump Stiffness Distributions,” ASME J. Tribol., 2007, 129, pp. 354–364.
[12] Le Lez S., Arghir M., Frene, J., “Static and Dynamic Characterization of a Bump-Type Foil Bearing Structure,” ASME J. Tribol., 2007, 129, pp. 75–83.
[13] Le Lez S., Arghir M., Frene J., “A New Bump-Type Foil Bearing Structure Analytical Model,” ASME J. Eng. Gas Turbines Power, 2007, 129, pp.1047–1057.
[14] Le Lez S., Arghir M., Frene, J., “A New Foil Bearing Dynamic Structural Model,” Proceedings of International Joint Tribology Conference, 2007, Paper No. IJTC2007–44110.
[15] Lee D. H., Kim Y. C., Kim K. W., “The Dynamic Performance Analysis of Foil Journal Bearings Considering Coulomb Friction: Rotating Unbalance Response,” Proceedings of International Joint Tribology Conference, 2007, Paper No. IJTC2007–44225.
[16] Dykas B., Howard S. A., “Journal Design Considerations for Turbomachine Shafts Supported on Foil Air Bearings,” STLE Tribol. Trans., 2004, 47, pp. 508–516.
[17] Heshmat H., Walton J. F., II., Tomaszewski M. J., “Demonstration of a Turbojet Engine Using an Air Foil Bearing,” ASME Paper No. GT2005–68404, 2005.
[18] Heshmat H., “Operation of Foil Bearings Beyond the Bending Critical Mode,” ASME J. Tribol., 2000, 122, pp. 192–198.
[19] Walton J. F., Heshmat H., “Application of Foil Bearings to Turbomachinery Including Vertical Operation,” ASME Paper No. 99-GT-391, 1999.
[20] Heshmat H., Walton J. F., DellaCorte C., Valco M. J., “Oil Free Turbocharger Demonstration Paves Way to Gas Turbine Engine Applications,” ASME Paper No. 2000-GT-0620, 2000.
[21] Walton J. F., II., Heshmat H., Tomaszewski M. J., “Testing of a Small Turbocharger/Turbojet Sized Simulator Rotor Supported on Foil Bearing,” ASME Paper No. GT2004–53647, 2004.
[22] Constantinescu V., “Basic relationships in turbulent lubrication and their extension to include thermal effects,” J. Lubr. Tech., 1973, 95, 147–154.
[23] Z. –C. Peng, M. M. Khonsari., “Hydrodynamic Analysis of Compliant Foil Bearings With Compressible Air Flow,” ASME J. Tribol., 2004, 126, pp. 542–546.
[24] Heshmat H., Walowit J.A., Pinkus O., “Analysis of Gas Lubricated Compliant Thrust Bearings,” ASME J. Lubr. Technol., 1983, 105, 638–646.
[25] Feng K., Kaneko S., “Analytical Model of Bump-Type Foil Bearings Using a Link-Spring Structure and a Finite-Element Shell Model,” ASME J. Tribol., 2010, 132, 021706.
[26] San Andrés, L., and Kim, T. H., “Improvements to the Analysis of Gas Foil Bearings: Integration of Top Foil 1D and 2D Structural Models. 2007; ASME Paper No. GT2007-27249.
[27] Kim, T; H.; San Andrés, L. Analysis of Advanced Gas Foil Bearings With Piecewise Linear Elastic Supports. Tribol. 2007, Int., 40(8), pp. 1239– 1245.
[28] Heshmat, H. Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capacity. ASME J. Tribol. 1994, 116(2), pp. 287–295.
[29] Howard; S. A.; DellaCorte; C. Steady-State Stiffness of Foil Air Journal Bearings at Elevated Temperatures. STLE Tribol. Trans. 2001, 44(3), pp. 489–493.
[30] Howard; S. A.; DellaCorte, C. Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing. STLE Tribol. Trans. 2001, 44(4), pp. 657–663.
[31] Lubell, D.; DellaCorte, C.; Stanford, M. Test Evolution and Oil-Free Engine Experience of a High Temperature Foil Air Bearing Coating. 2006; ASME Paper No. GT2006-90572.
[32] Radil, K.; Howard, S.; Dykas, B. The Role of Radial Clearance on the Performance of Foil Air Bearings. STLE Tribol. Trans. 2002, 45(4), pp. 485–490.
[33] Lee, D.; Kim, D. Thermo-Hydrodynamic Analyses of Bump Air Foil Bearings with Detailed Thermal Model of Foil Structures and Rotor. ASME J. Tribol. 2010, 132(2), p. 021704.
[34] San Andrés, L.; Kim, T. H. Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: A Model Anchored to Test Data. 2009; ASME Paper No. GT2009-59919.
[35] Feng, K.; Kaneko, S. A Study of Thermohydrodynamic Features of Multiwound Foil Bearing Using Lobatto Point Quadrature. 2008; ASME Paper No. GT2008-50110.
[36] Martowicz, A.; Zdziebko, P.; Roemer, J.; Zywica, G.; Baginski, P. Thermal Characterization of a Gas Foil Bearing—A Novel Method of Experimental Identification of the Temperature Field Based on Integrated Thermocouples Measurements. Sensors 2022, 22, 5718.
[37] Hou, Y.; Zhao, Q.; Guo, Y.; Ren, X.; Lai, T.; Chen, S. Application of Gas Foil Bearings in China. Appl. Sci. 2021, 11, 6210.
[38] Liu, X.; Li, C.; Du, J.; Nan, G. Thermal Characteristics Study of the Bump Foil ThrustGas Bearing. Appl. Sci. 2021, 11, 4311.
[39] Heshmat, C. A.; Xu, D. S.; Heshmat, H. Analysis of Gas Lubricated Foil Thrust Bearings Using Coupled Finite Element and Finite Difference Methods. ASME J. Tribol. 2000, 122(1), pp. 199–204.
[40] Iordanoff, I. Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design. ASME J. Tribol. 1999, 121(4), pp. 816–822.
[41] Bruckner, R. J. Simulation and Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings. 2004; Ph.D. thesis, Case Western Reserve University.
[42] Dykas, B.; Bruckner, R. J.; DellaCorte, C.; Edmonds, B.; Prahl, J. Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications. 2008; ASME Paper No. GT2008-50377.
[43] Park, D. J.; Kim, C. H.; Jang, G. H.; Lee, Y. B. Theoretical Considerations of Static and Dynamic Characteristics of Air Foil Thrust Bearing with Tilt and Slip Flow. Tribol. Int. 2008, 41(4), pp. 282–295.
[44] DellaCorte, C.; Edmonds, B. J. Preliminary Evaluation of PS300: A New Self-Lubricating High Temperature Composite Coating for Use to 800°C. 1995; NASA Technical Report No. NASA TM-107056.
[45] Stanford, M. K.; Yanke, A. M.; DellaCorte, C. Thermal Effects on a Low Cr Modification of PS304 Solid Lubricant Coating. 2004; NASA Technical Report No. NASA TM-2003-213111.
[46] Kim, D.; Park, S. Hydrostatic Air Foil Bearings: Analytical and Experimental Investigations. Tribol. Int. 2009, 42(3), pp. 413–425.
[47] Kim, D.; Kumar, M. Load Capacity Measurements of Hydrostatic Bump Foil Bearing. 2009; ASME Paper No. T2009-T59286.
[48] Kumar, M.; Kim, D. Parametric Studies on Dynamic Performance of Hybrid Air Foil Bearings. ASME J. Eng. Gas Turbines Power 2008, 130(6), p. 062501.
[49] Kim, D.; Lee, D. Design of Three-Pad Hybrid Air Foil Bearing and Experimental Investigation on Static Performance at Zero Running Speed. ASME J. Eng. Gas Turbines Power 2010, 132(12), p. 122504.
[50] Yu, T.-Y.; Wang, P.-J. Predictions of Dynamic property for Gas Foil Bearings Based on Multiphysics Three-dimensional Model of Computer Aided Engineering Simulations. Proceedings of the 10th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT’23) Canada. 2023. Paper No. 138. DOI: 10.11159/ffhmt23.138
[51] Yu, T.-Y.; Wang, P.-J. Simulation and Experimental Verification of Dynamic Characteristics on Gas Foil Thrust Bearings Based on Multi-Physics Three-Dimensional Computer Aided Engineering Methods. Lubricants 2022, 10, 222. https://doi.org/10.3390/lubricants1009022.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *