帳號:guest(13.58.134.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱國峰
作者(外文):Chiu, Kuo-Feng
論文名稱(中文):以微機電系統產生彈性體等向應變之設計優化
論文名稱(外文):Isotropic strain optimization in MEMS-elastomer hybrid system
指導教授(中文):羅丞曜
指導教授(外文):Lo, Cheng-Yao
口試委員(中文):方維倫
李昇憲
口試委員(外文):Fang, Wei-Leun
Li, Sheng-Shian
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:106033702
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:86
中文關鍵詞:彈性體微機電系統微機電系統等向性應變
外文關鍵詞:ElastomerIsotropic strainMicroelectromechanical systemPlasmon
相關次數:
  • 推薦推薦:0
  • 點閱點閱:414
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究提出以四向驅動微機電(microelectromechanical system, MEMS)結合彈性體,逐步增加彈性體之等向應變。在十字基礎配置中,十字形聚二甲基矽氧烷(polydimethylsiloxane, PDMS)放置在對稱設計之MEMS上方,其等向性應變比例(degree of isotropy, DOI)僅有40.96%。本研究中,藉由將施加力之位置從中心向外移,提高其形變之自由性,因此DOI增大36.48%。此外,通過填補幾何上不連續之PDMS(額外提高7.20%)或消除直角形狀之回饋約束(額外提高7.52%),可實現DOI之不斷擴展。最終,以八向驅動MEMS結合三個不同解決方案,使作動區域達到100%之DOI,可支援需要等向性應變調變。除了機械分析外,亦藉由表面電漿子共振(surface plasmon resonance, SPR)之濾色結果,驗證DOI與色純度之間之正相關變化趨勢。此外,為了擴大應用範圍,將本研究亦評估透過增強MEMS結構所提供之致動力,進一步提高彈性體上之應變,提升兩倍之等向性應變。
This research reports results that incrementally enlarge isotropically distributed strains in an elastomer, which was integrated in a four-actuator microelectromechanical system (MEMS) as a hybrid configuration. Based on the fundamental configuration, in which a cross shape polydimethylsiloxane (PDMS) was placed above the symmetrically designed MEMS with a limited 40.96% degree of isotropy (DOI), retreating the location of the applied forces outwards from the center helped on inducing free-form PDMS deformation and enlarging the DOI by 36.48%. Continuously expanding the DOI was realized by either connecting the geometrically discontinued PDMS (for additional 7.20% improvement) or removing constraints from its right-angled shape (for additional 7.52% improvement). Finally, an integrated configuration that contained the three solutions with an eight-actuator MEMS exhibited a 100% DOI in the active area, which supports various electromagnetic modulations that require isotropic strain operations. In addition to the mechanical analyses, color filtering based on surface plasmon resonance was examined to verify the improvements in terms of positive relationship between the DOI and color purity. An example of further enhancing the extent of the strain by enlarging the applied forces in the MEMS was given, which proved that a doubled linear and isotropic strain could be induced in the hybrid configuration compared with that generated by the existing configuration.
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
符號表 XII
第一章 緒論 1
1.1、 前言 1
1.2、 彈性體調變應用 2
1.2.1、 微透鏡 2
1.2.2、 法布立–培若干涉儀 3
1.3、 彈性體等向形變 3
1.4、 研究動機 4
1.5、 文獻回顧 5
1.5.1、 電漿子濾色研究 5
1.5.2、 四向對稱靜電式微機電 6
1.5.3、 彈性體等向性比例 6
第二章 理論與方法 21
2.1、 微機電系統設置 21
2.1.1、 靜電式致動器 21
2.1.2、 梳狀靜電致動器 22
2.1.3、 十字基礎設計 23
2.1.4、 十字外移設計 24
2.1.5、 方形四向設計 24
2.1.6、 對角四向設計 25
2.1.7、 八向設計 25
2.2、 表面電漿子 26
2.3、 證明等向性應變之表面電漿子設計 27
第三章 模擬與設計 36
3.1、 微機電系統作動彈性體模擬 36
3.1.1、 -z方向形變對平面分析之影響 37
3.1.2、 十字基礎設計力學模擬 38
3.1.3、 十字外移設計力學模擬 39
3.1.4、 方形四向設計力學模擬 40
3.1.5、 對角四向設計力學模擬 42
3.1.6、 八向設計力學模擬 43
3.2、 各彈性體配置綜合分析 44
第四章 結果與討論 54
4.1、 光學分析方法介紹 54
4.1.1、 CIE 1931色彩空間 54
4.1.2、 光譜優劣分析(Q factor) 55
4.2、 各配置之電漿子奈米結構布點 56
4.3、 各配置之電漿子濾色分析 59
4.4、 微機電效能之提升 60
4.4.1、 致動力之增強 60
4.4.2、 結構剛性之降低 61
4.4.3、 綜合效能提升分析 62
第五章 結論與未來展望 77
5.1、 結論 77
5.2、 未來展望 78
參考文獻 80
附錄一 論文相似度比對結果 83
附錄二 著作列表 85
附錄三 獲獎紀錄 86
[1] S. Muttikulangara, M. Baranski, S. Rehman, L. Hu, and J. Miao, “Mems tunable diffraction grating for spaceborne imaging spectroscopic applications”, Sensors, vol. 17, no. 10, pp. 2372, 2017.
[2] C. Errando-Herranz, N. Le Thomas, and K. B. Gylfason, “Low-power optical beam steering by microelectromechanical waveguide gratings”, Optics letters, vol. 44, no. 4, pp. 855-858, 2019.
[3] Y. Zhang, H. Keum, K. Park, R. Bashir, and S. Kim, “Micro-masonry of MEMS sensors and actuators”, Journal of Microelectromechanical Systems, vol. 23, no. 2, pp. 308-314, 2013.
[4] H. Wijshoff, “The dynamics of the piezo inkjet printhead operation”, Physics reports, vol. 491, no. 4-5, pp. 77-177, 2010.
[5] S. Büttgenbach, “Electromagnetic micromotors—Design, fabrication and applications”, Micromachines, vol. 5, no. 4, pp. 929-942, 2014.
[6] A. Nisar, N. Afzulpurkar, B. Mahaisavariya, and A. Tuantranont, “MEMS-based micropumps in drug delivery and biomedical applications”, Sensors and Actuators B: Chemical, vol. 130, no. 2, pp. 917-942, 2008.
[7] Y.-H. Seo, K. Hwang, H.-C. Park, and K.-H. Jeong, “Electrothermal MEMS fiber scanner for optical endomicroscopy”, Optics express, vol. 24, no. 4, pp. 3903-3909, 2016.
[8] B. Gorissen, R. Donose, D. Reynaerts, and M. De Volder, “Flexible pneumatic micro-actuators: analysis and production”, Procedia Engineering, vol. 25, pp. 681-684, 2011.
[9] Y.-C. Tung and K. Kurabayashi, “A single-layer multiple degree-of-freedom PDMS-on-silicon dynamic focus micro-lens”, 19th IEEE International Conference on Micro Electro Mechanical Systems, pp. 838-841, 2006.
[10] K. Takahashi, T. Fujie, N. Sato, S. Takeoka, and K. Sawada, “MEMS optical interferometry-based pressure sensor using elastomer nanosheet developed by dry transfer technique”, Japanese Journal of Applied Physics, vol. 57, no. 1, pp. 010302, 2018.
[11] M. Stach, E.-C. Chang, C.-Y. Yang, and C.-Y. Lo, “Post-lithography pattern modification and its application to a tunable wire grid polarizer”, Nanotechnology, vol. 24, no. 11, pp. 115306, 2013.
[12] J.-W. Hong, C.-Y. Yang, and C.-Y. Lo, “Critical dimension and pattern size enhancement using pre-strained lithography”, Applied Physics Letters, vol. 105, no. 15, pp. 154103, 2014.
[13] B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters”, Scientific reports, vol. 3, pp. 2840, 2013.
[14] S. U. Lee and B.-K. Ju, “Wide-gamut plasmonic color filters using a complementary design method”, Scientific reports, vol. 7, pp. 40649, 2017.
[15] S. D. Rezaei, J. Ho, R. J. H. Ng, S. Ramakrishna, and J. K. Yang, “On the correlation of absorption cross-section with plasmonic color generation”, Optics express, vol. 25, no. 22, pp. 27652-27664, 2017.
[16] Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting”, Optics express, vol. 20, no. 10, pp. 11466-11477, 2012.
[17] S.-C. Lo, Y.-T. Hu, C.-L. Pan, and C.-Y. Lo, “Numerical analysis of a microelectromechanical system-based color filtering device with surface plasmon resonance modulation”, Displays, vol. 54, pp. 20-27, 2018.
[18] Y.-T. Hu, K.-F. Chiu, A. V. Vasenin, M. Florianová, and C.-Y. Lo, “Surface plasmon resonance manipulation through application of mechanically generated planar and linear strain”, Applied Physics Express, vol. 12, no. 9, pp. 096504, 2019.
[19] J. I. Seeger and B. E. Boser, “Charge control of parallel-plate, electrostatic actuators and the tip-in instability”, Journal of microelectromechanical systems, vol. 12, no. 5, pp. 656-671, 2003.
[20] B. Morgan and R. Ghodssi, “Design and simulation of comb-drive actuators incorporating gray-scale technology for tailored actuation characteristics”, Smart Sensors, Actuators, and MEMS II, vol. 5836, pp. 468-476, 2005.
[21] Jiang, N., X. Zhuo and J. Wang, “Active plasmonics: principles, structures, and applications”, Chemical reviews, vol. 118, no. 6, pp. 3054-3099, 2017.
[22] Zayats, A. V., I. I. Smolyaninov and A. A. Maradudin, “Nano-optics of surface plasmon polaritons”, Physics reports, vol 408, no.3-4, pp. 131-314, 2005.
[23] L. Sun, P. Chen, and L. Lin, “Enhanced Molecular Spectroscopy via Localized Surface Plasmon Resonance”, Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences, pp. 383, 2016.
[24] B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis”, Journal of Physical Chemistry B, vol. 110, no. 32, pp. 15666-15675, 2006.
[25] https://en.wikipedia.org/wiki/CIE_1931_color_space
[26] D.Malacara, “Color Vision and Colorimetry Theory and Application, The International society for optical Engineering”, 2002.
[27] Y.-T. Hu, Y.-C. Chen, A. V. Vasenin, M. Florianová, K.-F. Chiu, C.-L. Pan, and C.-Y. Lo, “An integrated method based on energy concentration for evaluating normally distributed spectra in the visible region”, Displays, vol. 57, pp. 7-17, 2019.
[28] W. Wai-Chi, A. Azid, and B. Y. Majlis, “Formulation of stiffness constant and effective mass for a folded beam”, Archives of Mechanics, vol. 62, no. 5, pp. 405-418, 2010.
[29] S. B. Sedaghat and B. A. Ganji, “A novel MEMS capacitive microphone using spring-type diaphragm”, Microsystem Technologies, vol. 25, no. 1, pp. 217-224, 2019.
(此全文20250113後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *