|
[1] C. Berrettoni, S. Berneschi, R. Bernini, A. Giannetti, I. A. Grimaldi, G. Persichetti, G. Testa, S. Tombelli, C. Trono, and F. Baldini, "Optical Monitoring of Therapeutic Drugs with a Novel Fluorescence- Based POCT Device," Procedia Engineering, vol. 87, pp. 392-395, 2014. [2] L. Gao, Y. Lyu, and Y. Li, "Trends in Drug Resistance of Acinetobacter baumannii over a 10-year Period: Nationwide Data from the China Surveillance of Antimicrobial Resistance Program," Chinese Medical Journal, vol. 130, no. 6, pp. 659-664, 2017. [3] E. Wenzler, D. A. Goff, J. E. Mangino, E. E. Reed, A. Wehr, and K. A. Bauer, "Impact of rapid identification of Acinetobacter Baumannii via matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with antimicrobial stewardship in patients with pneumonia and/or bacteremia," Diagn Microbiol Infect Dis, vol. 84, no. 1, pp. 63-68, 2016. [4] L. Dijkshoorn, A. Nemec, and H. Seifert, "An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii," Nature Reviews Microbiology, Review Article vol. 5, p. 939, 2007. [5] J. C. Lagier, S. Edouard, I. Pagnier, O. Mediannikov, M. Drancourt, and D. Raoult, "Current and past strategies for bacterial culture in clinical microbiology," Clin Microbiol Rev, vol. 28, no. 1, pp. 208-36, 2015. [6] K. Kim, J. H. Guo, Z. X. Liang, and D. L. Fan, "Artificial Micro/Nanomachines for Bioapplications: Biochemical Delivery and Diagnostic Sensing," (in English), Advanced Functional Materials, Article vol. 28, no. 25, p. 19, Jun 2018, Art. no. 1705867. [7] R. Coico, "Gram Staining," Current Protocols in Microbiology, vol. 00, no. 1, pp. A.3C.1-A.3C.2, 2006. [8] R. Patel, "New Developments in Clinical Bacteriology Laboratories," Mayo Clinic Proceedings, vol. 91, no. 10, pp. 1448-1459, 2016/10/01/ 2016. [9] S. Bashiri, F. N. Mansoor, and Z. Valadkhani, "Expansion of a highly sensitive and specific ELISA test for diagnosis of hydatidosis using recombinant EgB8/2 protein," (in English), Iranian Journal of Basic Medical Sciences, Article vol. 22, no. 2, pp. 134-139, Feb 2019. [10] N. Alizadeh, M. Y. Memar, B. Mehramuz, S. S. Abibiglou, F. Hemmati, and H. Samadi Kafil, "Current advances in aptamer-assisted technologies for detecting bacterial and fungal toxins," (in eng), J Appl Microbiol, vol. 124, no. 3, pp. 644-651, Mar 2018. [11] A. R. Oliphant, C. J. Brandl, and K. Struhl, "Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein," Mol Cell Biol, vol. 9, no. 7, pp. 2944-9, 1989. [12] A. D. Ellington and J. W. Szostak, "In vitro selection of RNA molecules that bind specific ligands," nature, vol. 346, no. 6287, p. 818, 1990. [13] C. Tuerk and L. Gold, "Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase," Science, vol. 249, no. 4968, pp. 505-510, 1990. [14] J. Voskuil, "Commercial antibodies and their validation," (in eng), F1000Research, vol. 3, pp. 232-232, 2014. [15] Z. Cao, R. Tong, A. Mishra, W. Xu, G. C. Wong, and Y. Lu, "Reversible cell‐specific drug delivery with aptamer‐functionalized liposomes," Angewandte Chemie International Edition, vol. 48, no. 35, pp. 6494-6498, 2009. [16] J. G. Bruno and J. L. Kiel, "In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection," Biosensors and Bioelectronics, vol. 14, no. 5, pp. 457-464, 1999. [17] J. Wang, X. Cai, G. Rivas, H. Shiraishi, and N. Dontha, "Nucleic-acid immobilization, recognition and detection at chronopotentiometric DNA chips," Biosensors and Bioelectronics, vol. 12, no. 7, pp. 587-599, 1997. [18] M. S. Song, S. S. Sekhon, W. R. Shin, H. C. Kim, J. Min, J. Y. Ahn, and Y. H. Kim, "Detecting and Discriminating Shigella sonnei Using an Aptamer-Based Fluorescent Biosensor Platform," (in English), Molecules, Article vol. 22, no. 5, p. 12, 2017, Art. no. 825. [19] J. G. Bruno, T. Phillips, T. Montez, A. Garcia, J. C. Sivils, M. W. Mayo, A. Greis, and L. Metrix, "Development of a Fluorescent Enzyme-Linked DNA Aptamer-Magnetic Bead Sandwich Assay and Portable Fluorometer for Sensitive and Rapid Listeria Detection," (in English), Journal of Fluorescence, Article vol. 25, no. 1, pp. 173-183, Jan 2015. [20] X. Wang and Q. Zhao, "A fluorescent sandwich assay for thrombin using aptamer modified magnetic beads and quantum dots," Microchimica Acta, vol. 178, no. 3-4, pp. 349-355, 2012. [21] Y. H. Tennico, D. Hutanu, M. T. Koesdjojo, C. M. Bartel, and V. T. Remcho, "On-chip aptamer-based sandwich assay for thrombin detection employing magnetic beads and quantum dots," Analytical chemistry, vol. 82, no. 13, pp. 5591-5597, 2010. [22] S. J. Xiao, P. P. Hu, X. D. Wu, Y. L. Zou, L. Q. Chen, L. Peng, J. Ling, S. J. Zhen, L. Zhan, and Y. F. Li, "Sensitive discrimination and detection of prion disease-associated isoform with a dual-aptamer strategy by developing a sandwich structure of magnetic microparticles and quantum dots," Analytical chemistry, vol. 82, no. 23, pp. 9736-9742, 2010. [23] S. Rasoulinejad and S. L. M. Gargari, "Aptamer-nanobody based ELASA for specific detection of Acinetobacter baumannii isolates," J Biotechnol, vol. 231, pp. 46-54, 2016. [24] R. Stoltenburg, C. Reinemann, and B. Strehlitz, "SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands," Biomol Eng, vol. 24, no. 4, pp. 381-403, 2007. [25] M. Berner, U. Hilbig, M. B. Schubert, and G. Gauglitz, "Laser-induced fluorescence detection platform for point-of-care testing," Measurement Science and Technology, vol. 28, no. 8, p. 085701, 2017. [26] L. Novak, P. Neuzil, J. Pipper, Y. Zhang, and S. Lee, "An integrated fluorescence detection system for lab-on-a-chip applications," Lab Chip, vol. 7, no. 1, pp. 27-9, Jan 2007. [27] T. Kamei and T. Wada, "Contact-lens type of micromachined hydrogenated amorphous Si fluorescence detector coupled with microfluidic electrophoresis devices," Applied physics letters, vol. 89, no. 11, p. 114101, 2006. [28] J. L. Fu, Q. Fang, T. Zhang, X. H. Jin, and Z. L. Fang, "Laser-induced fluorescence detection system for microfluidic chips based on an orthogonal optical arrangement," Analytical chemistry, vol. 78, no. 11, pp. 3827-3834, 2006. [29] J. Webster, M. Burns, D. Burke, and C. Mastrangelo, "Monolithic capillary electrophoresis device with integrated fluorescence detector," Analytical chemistry, vol. 73, no. 7, pp. 1622-1626, 2001. [30] A. Klotz, A. Brecht, C. Barzen, G. Gauglitz, R.D. Harris, G.R. Quigley, J.S. Wilkinson, and R. A. Abuknesha, "Immunofluorescence sensor for water analysis," 1998. [31] P. Yeh, N. Yeh, C.-H. Lee, and T.-J. Ding, "Applications of LEDs in optical sensors and chemical sensing device for detection of biochemicals, heavy metals, and environmental nutrients," Renewable and Sustainable Energy Reviews, vol. 75, pp. 461-468, 2017. [32] R. Bilan, I. Nabiev, and A. Sukhanova, "Quantum Dot-Based Nanotools for Bioimaging, Diagnostics, and Drug Delivery," (in English), Chembiochem, Review vol. 17, no. 22, pp. 2103-2114, Nov 2016. [33] A. J. Tudos, G. J. Besselink, and R. B. Schasfoort, "Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry," Lab Chip, vol. 1, no. 2, pp. 83-95, 2001. [34] S. K. Vashist, "Point-of-Care Diagnostics: Recent Advances and Trends," Biosensors, vol. 7, no. 4, p. 62, 2017. [35] C.-M. Ho and Y.-C. Tai, "MICRO-ELECTRO-MECHANICAL-SYSTEMS (MEMS) AND FLUID FLOWS," Annual Review of Fluid Mechanics, vol. 30, no. 1, pp. 579-612, 1998. [36] T. Vilkner, D. Janasek, and A. Manz, "Micro total analysis systems. Recent developments," Analytical chemistry, vol. 76, no. 12, pp. 3373-3386, 2004. [37] D. R. Reyes, D. Iossifidis, P.-A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Analytical chemistry, vol. 74, no. 12, pp. 2623-2636, 2002. [38] P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, "Micro total analysis systems. 2. Analytical standard operations and applications," Analytical chemistry, vol. 74, no. 12, pp. 2637-2652, 2002. [39] S. Shoji and M. Esashi, "Microflow devices and systems," Journal of Micromechanics and Microengineering, vol. 4, no. 4, p. 157, 1994. [40] M. H. Wu, S. B. Huang, Z. Cui, Z. Cui, and G. B. Lee, "A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture," (in eng), Biomed Microdevices, vol. 10, no. 2, pp. 309-19, 2008. [41] M. M. Aeinehvand, L. Weber, M. Jimenez, A. Palermo, M. Bauer, F. F. Loeffler, F. Ibrahim, F. Breitling, J. Korvink, M. Madou, D. Mager, and S. O. Martinez-Chapa, "Elastic reversible valves on centrifugal microfluidic platforms," (in English), Lab on a Chip, Article vol. 19, no. 6, pp. 1090-1100, Mar 2019. [42] R. Tang, H. Yang, Y. Gong, M. You, Z. Liu, J. R. Choi, T. Wen, Z. Qu, Q. Mei, and F. Xu, "A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection," (in eng), Lab Chip, vol. 17, no. 7, pp. 1270-1279, Mar 29 2017. [43] J. H. Wu, C. H. Wang, Y. D. Ma, and G. B. Lee, "A nitrocellulose membrane-based integrated microfluidic system for bacterial detection utilizing magnetic-composite membrane microdevices and bacteria-specific aptamers," (in eng), Lab Chip, vol. 18, no. 11, pp. 1633-1640, May 29 2018. [44] J. Li, K. W. Chang, C. H. Wang, C. H. Yang, S. C. Shiesh, and G. B. Lee, "On-chip, aptamer-based sandwich assay for detection of glycated hemoglobins via magnetic beads," Biosens Bioelectron, vol. 79, pp. 887-93, May 15 2016. [45] J. H. Wu, C. H. Wang, Y. D. Ma, and G. B. Lee, "A nitrocellulose membrane-based integrated microfluidic system for bacterial detection utilizing magnetic-composite membrane microdevices and bacteria-specific aptamers," Lab on a Chip, vol. 18, no. 11, pp. 1633-1640, 2018. [46] S. Park, H. Kim, S.-H. Paek, J. W. Hong, and Y.-K. Kim, "Enzyme-linked immuno-strip biosensor to detect Escherichia coli O157:H7," Ultramicroscopy, vol. 108, no. 10, pp. 1348-1351, 2008/09/01/ 2008. [47] C.-H. Wang, J.-J. Wu, and G.-B. Lee, "Screening of highly-specific aptamers and their applications in paper-based microfluidic chips for rapid diagnosis of multiple bacteria," Sensors and Actuators B: Chemical, vol. 284, pp. 395-402, 2019/04/01/ 2019.
|