帳號:guest(3.133.134.123)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊太乙
作者(外文):Terry, Juang
論文名稱(中文):整合手機顯微鏡之離心晶片平台用於腸道寄生蟲之檢測
論文名稱(外文):Diagnostics of Intestinal Parasites Using a Portable Centrifuge Device Paired with a Smartphone-Based Microscope
指導教授(中文):李國賓
指導教授(外文):Lee, Gwo-Bin
口試委員(中文):王玉麟
陳致真
口試委員(外文):Wang, Yu-Lin
Chen, Chih-chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:106033613
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:51
中文關鍵詞:土壤傳播蠕蟲全球健康智能手機顯微鏡微流體離心力
外文關鍵詞:Soil-transmitted helminthsglobal healthsmartphone microscopymicrofluidicscentrifugal force
相關次數:
  • 推薦推薦:0
  • 點閱點閱:259
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究的目的在於開發出一套能夠以高靈敏度以及高精度做腸道寄生蟲快速診斷的系統。本系統主要整合了智能手機顯微鏡以及手持式離心設備,主要應用於資源匱乏的地區做及時檢測。土壤傳播的蠕蟲是一大類寄生蟲,主要盛行於衛生條件差且沒有乾淨水源之發展中國家。目前寄生蟲標準的診斷最常用的方法(直接塗片方法)雖然成本低廉且相對容易執行,然而主要缺點為偽陰性結果很高。相對高靈敏度的檢測方法 如離心檢測法需要昂貴,笨重的設備,如搖擺式離心機和顯微鏡。在資源有限的開發中國家這些設備都不容易取得以及維護。因此在本研究中,開發了一種手動驅動的微流體離心裝置,用於濃縮與計算糞便樣品中寄生蟲卵的數量,同時使用智能手機與顯微鏡鏡頭配對,通過智能手機上的圖像處理對寄生蟲感染進行檢測和定量。經由我們的初步結果限顯示,我們這套檢測系統可以檢測和量化來自糞便樣品的多種寄生蟲,其最低檢測濃度理論值可達20個蛋/克,超過了當前台式方法的靈敏度。此外,該系統作離心濃縮寄生蟲蛋只須2~3分鐘,且回收率高達95% 。該平台可望能提供比當前方法更可靠的糞便感染評估,並且可以在資源有限的環境中使用。
This study presents a centrifugal device coupled with a smartphone microscope capable of rapidly diagnosing intestinal parasitic infections with high sensitivity and accuracy. Soil transmitted helminths (STHs) are a family of parasitic worms found primarily in developing countries with poor sanitation and limited access to clean water. The most common method for STH diagnosis (such as direct smear or Kato Katz methods), though low cost and relatively easy to perform, still suffer from high false-negative results, while active floatation methods require expensive, bulky equipment such as swing bucket centrifuges and microscope, which is typically not accessible in resource-limited regions. In this study, a hand-driven microfluidic centrifuge device for active concentration of parasitic eggs within fecal samples was developed, while using a smartphone paired with a microscope lens to perform image acquisition and analysis. To the best of our knowledge, this is the first time an all-in-one point-of-care system capable of performing parasite egg concentration and smartphone imaging has been demonstrated. Our experimental results suggested that the system could detect and quantify parasites from fecal samples at levels as low as 20 eggs/gram which exceeds the sensitivity of current bench-top methods. Also, the centrifugation process to concentrate parasite eggs to the center of the device only take 2~3 minutes to complete with a 95% recovery rate. This platform may provide a more reliable assessment of fecal infections than the current approach and can be used in resource-limited settings.
Chapter 1 Introduction................................................1
1.1 Motivation...........................................................1
1.2 Parasitology.........................................................2
1.3 Common types of soil-transmitted helminths...........3
1.3.1 Paragonimus westermani....................................3
1.3.2 Taenia spp. .......................................................3
1.3.3 Ascaris lumbricoides.........................................4
1.3.4 Toxocara canis.................................................5
1.4 Current methods for diagnosing STH infections .......6
1.5 Motivation and novelty........................................6
Chapter 2 Materials and Methods ...............................9
2.1 Experimental setup..............................................9
2.2 Chip design........................................................11
2.3 Centrifugal chip fabrication..................................17
2.4 Preparation of floatation solution..........................19
2.5 C. elegans culture and egg extraction.....................21
2.6 Harvesting parasite eggs.......................................21
Chapter 3 Results and Discussion................................24
3.1 Evaluation of smartphone microscope resolution....24
3.2 Centrifugation viability test using spin coater.........24
3.3 Viability test of hand-driven centrifugation............24
3.4 Measuring spin speed of hand-driven centrifuge ......25
3.5 Measurements of egg recovery (Toxocara Canis) after centrifugation....42
Chapter 4 Conclusion and Future perspectives................45
4.1 Compare with current methods including McMaster and FLOTAC techniques......46
4.2 Automatic image capture and analysis implementing computer vision..................46
Chapter 5 References..........................................48
1. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, Hotez PJ. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. The Lancet 2006;367:1521-1532.
2. Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J. Helminth infections: the great neglected tropical diseases. The Journal of clinical investigation 2008;118:1311-1321.
3. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasites & vectors 2014;7:37.
4. Teesdale CH, Amin MA. A simple thick-smear technique for the diagnosis of Schistosoma mansoni infection. Bulletin of the World Health Organization 1976;54:703-705.
5. Katz N, Chaves A, Pellegrino J. A simple device for quantitative stool thick-smear technique in Schistosomiasis mansoni. Revista do Instituto de Medicina Tropical de Sao Paulo 1972;14:397-400.
6. Palmeira DC, Carvalho AG, Rodrigues K, Couto JL. [Prevalence of Schistosoma mansoni infection in two municipalities of the State of Alagoas, Brazil]. Revista da Sociedade Brasileira de Medicina Tropical 2010;43:313-317.
7. Bauer BU, Pomroy WE, Gueydon J, Gannac S, Scott I, Pfister K. Comparison of the FLOTAC technique with the McMaster method and the Baermann technique to determine counts of Dictyocaulus eckerti L1 and strongylid eggs in faeces of red deer (Cervus elaphus). Parasitol Res 2010;107:555-560.
8. Gaglio G, Cringoli G, Rinaldi L, Brianti E, Giannetto S. Use of the FLOTAC technique for the diagnosis of Aelurostrongylus abstrusus in the cat. Parasitol Res 2008;103:1055-1057.
9. Levecke B, De Wilde N, Vandenhoute E, Vercruysse J. Field Validity and Feasibility of Four Techniques for the Detection of Trichuris in Simians: A Model for Monitoring Drug Efficacy in Public Health? PLOS Neglected Tropical Diseases 2009;3:e366.
10. Lima VF, Ramos RA, Lepold R, Cringoli G, Rinaldi L, Faustino MA, Alves LC. Use of the FLOTAC technique to diagnosing parasites of the urinary tract of dogs. Parasitol Res 2016;115:1737-1739.
11. Rinaldi L, Maurelli MP, Musella V, Santaniello A, Coles GC, Cringoli G. FLOTAC: an improved method for diagnosis of lungworm infections in sheep. Vet Parasitol 2010;169:395-398.
12. Rinaldi L, Russo T, Schioppi M, Pennacchio S, Cringoli G. Passalurus ambiguus: new insights into copromicroscopic diagnosis and circadian rhythm of egg excretion. Parasitol Res 2007;101:557-561.
13. Ruzicova M, Petrzelkova KJ, Kalousova B, Modry D, Pomajbikova K. Validation of FLOTAC for the detection and quantification of Troglodytella abrassarti and Neobalantidium coli in chimpanzees and pigs. J Parasitol 2014;100:662-670.
14. Santos FL, Cerqueira EJ, Soares NM. Comparison of the thick smear and Kato-Katz techniques for diagnosis of intestinal helminth infections. Revista da Sociedade Brasileira de Medicina Tropical 2005;38:196-198.
15. Bekana T, Mekonnen Z, Zeynudin A, Ayana M, Getachew M, Vercruysse J, Levecke B. Comparison of Kato-Katz thick-smear and McMaster egg counting method for the assessment of drug efficacy against soil-transmitted helminthiasis in school children in Jimma Town, Ethiopia. Transactions of the Royal Society of Tropical Medicine and Hygiene 2015;109:669-671.
16. Chaisson LH, Reber C, Phan H, Switz N, Nilsson LM, Myers F, Nhung NV, Luu L, Pham T, Vu C, Nguyen H, Nguyen A, Dinh T, Nahid P, Fletcher DA, Cattamanchi A. Evaluation of mobile digital light-emitting diode fluorescence microscopy in Hanoi, Viet Nam. The International Journal of Tuberculosis and Lung Disease 2015;19:1068-1072.
17. Rappaport KM, McCracken CC, Beniflah J, Little WK, Fletcher DA, Lam WA, Shane AL. Assessment of a Smartphone Otoscope Device for the Diagnosis and Management of Otitis Media. Clin Pediatr (Phila) 2016;55:800-810.
18. Sowerby SJ, Crump JA, Johnstone MC, Krause KL, Hill PC. Smartphone Microscopy of Parasite Eggs Accumulated into a Single Field of View. The American journal of tropical medicine and hygiene 2016;94:227-230.
19. Phillips ZF, D'Ambrosio MV, Tian L, Rulison JJ, Patel HS, Sadras N, Gande AV, Switz NA, Fletcher DA, Waller L. Multi-Contrast Imaging and Digital Refocusing on a Mobile Microscope with a Domed LED Array. PLOS ONE 2015;10:e0124938.
20. Switz NA, D'Ambrosio MV, Fletcher DA. Low-Cost Mobile Phone Microscopy with a Reversed Mobile Phone Camera Lens. PLOS ONE 2014;9:e95330.
21. Levecke B, Behnke JM, Ajjampur SS, Albonico M, Ame SM, Charlier J, Geiger SM, Hoa NT, Kamwa Ngassam RI, Kotze AC, McCarthy JS, Montresor A, Periago MV, Roy S, Tchuem Tchuente LA, Thach DT, Vercruysse J. A comparison of the sensitivity and fecal egg counts of the McMaster egg counting and Kato-Katz thick smear methods for soil-transmitted helminths. PLoS neglected tropical diseases 2011;5:e1201.
22. Barda B, Cajal P, Villagran E, Cimino R, Juarez M, Krolewiecki A, Rinaldi L, Cringoli G, Burioni R, Albonico M. Mini-FLOTAC, Kato-Katz and McMaster: three methods, one goal; highlights from north Argentina. Parasites & vectors 2014;7:271.
23. Zhu X, Liu G, Guo Y, Tian Y. Study of PMMA thermal bonding. Microsystem Technologies 2007;13:403-407.
24. Bhamla MS, Benson B, Chai C, Katsikis G, Johri A, Prakash M. Hand-powered ultralow-cost paper centrifuge. Nature Biomedical Engineering 2017;1:0009.
25. Rivenson Y, Ceylan Koydemir H, Wang H, Wei Z, Ren Z, Günaydın H, Zhang Y, Göröcs Z, Liang K, Tseng D, Ozcan A. Deep Learning Enhanced Mobile-Phone Microscopy. ACS Photonics 2018;5:2354-2364.
26. Sommer C. Quantitative characterization of texture used for identification of eggs of bovine parasitic nematodes. Journal of Helminthology 1998;72:179-182.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *