|
1. H. H. Shahabi, M. M. Ratnam, In-cycle monitoring of tool nose wear and surface roughness of turned parts using machine vision, The International Journal of Advanced Manufacturing Technology, February 2009, Volume 40, Issue 11–12, pp 1148–1157 2. S. Engin, Y. Altintas, Mechanics and dynamics of general milling cutters. Part I: helical end mills, International Journal of Machine Tools & Manufacture 41 (2001) 2195–2212 3. 維基百科,Cutter Types, 檢自: http://mindworks.shoutwiki.com/wiki/ Cutter_Types_(Mill) (Aug. 9, 2019) 4. N. Ghosh, et al., Estimation of tool wear during CNC milling using neural network-based sensor fusion, Mechanical Systems and Signal Processing 21 (2007) 466–479 5. 藍天雄,刀具磨耗考量下之數控車削參數最佳化研究,德霖學報「第二十一期」,民國九十六年六月 6. Organization(ISO), I.S., Tool Life Testing in Milling—Part 2: End Milling. 1989: p.8688-2 7. E.P. DeGarmo, et al., Materials and process in manufacturing. 1997: Prentice Hall. 8. P.W. Prickett, C. Johns, An overview of approaches to end milling tool monitoring, International Journal of Machine Tools & Manufacture 39 (1999) 105–122 9. F.W. Taylor, On the art of cutting metals, ASME, 1907. 28. 10. S. Kurada, C. Bradley, A review of machine vision sensors for tool condition monitoring, Computer in Industry, 34 (1997) 55-72 11. A. Weckenmann, K. Nalbantic, Precision measurement of cutting tools with two matched optical 3D-sensors, CIRP Ann.-Manuf. Technology 2003; 52(1):443–6.
12. J. Jurkovic, et al., New approach in tool wear measuring technique using CCD vision system, Int. J. Mach. Tools Manuf. 2005;45(9):1023–30. 13. A. Devillez, S. Lesko, W. Mozer, Cutting tool crater wear measurement with white light interferometry. Wear 2004; 256(1): 56 – 65. 14. M. Szydłowski, et al., Machine vision micro-milling tool wear inspection by image reconstruction and light reflectance, Precision Engineering 44 (2016) 236–244 15. M. Sukeri, et al., Wear Detection of Drill Bit by Image-based Technique, IOP Conf. Series: Materials Science and Engineering, 328(2018) 012011 16. D. M. D’Addona, R. Teti, Image data processing via neural networks for tool wear prediction, Proced. CIRP 2013; 12:252–7. 17. B. Marek, et al., Tool condition monitoring using artificial intelligence methods, Engineering Applications of Artificial Intelligence 15 (2002) 73–80 18. Y. Dai, and K. Zhu, A machine vision system for micro-milling tool condition monitoring. Precision Engineering, 2018. 52: p. 183-191. 19. T. Goldschmidt, A. Jansen, H. Koziolek, J. Doppelhamer, H. P. Breivold, Scalability and Robustness of Time-Series Databases for Cloud-Native Monitoring of Industrial Processes, 2014 IEEE 7th International Conference on Cloud Computing 20. 林瑋琦(2011年), 德國「工業4.0」產業趨勢與衍生商機大揭密, 中華民國對外貿易發展協會 21. ZVEI (April, 2017), Guideline: What Criteria do Industrie 4.0 Products Need to Fulfil?, German Electrical and Electronic Manufactures’ Association 22. ZVEI (November, 2018), Details of the Asset Administration Shell, Part 1- The exchange of information between partners in the value chain of Industrie 4.0, Federal Ministry for Economic Affairs and Energy(BMWi) 23. X. Zhang, W. Tsang, X. Tian, K. Yamazaki, and M. Mori, Automatic Segmentation of the Apparent Contour for 3D Modeling of Cutting Tools from Single View, In: Bebis G. et al. (eds) Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg 24. N. Otsu, A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 1979. 9(1): p. 62-66. 25. Jae S. Lim, Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1990, p. 548, equations 9.26, 9.27, and 9.29. 26. 維基百科,QR碼,檢自https://zh.wikipedia.org/wiki/QR碼, 修訂於2019年6月24日(Jul. 2, 2019) 27. 科技網,360°應用—二維條碼4種規格 QR Code容量最大, 檢自https://www.digitimes.com.tw/tw/dt/n/shwnws.asp?id=61060 (Jul. 2, 2019) 28. AWS, 什麼是NoSQL?,檢自https://aws.amazon.com/tw/nosql/ (Jul.2, 2019) 29. taazaa, NoSQL or SQL – How to Choose the Best Fit for a Project, 檢自https://taazaa.com/nosql-or-sql-how-to-choose-the-best-fit-for-a-project/ (Jul. 2, 2019) 30. 王鴻鈞,應用三維機械視覺於端銑刀磨耗檢測系統,國立清華大學動力機械工程研究所,碩士論文,民國107年7月 31. 維基百科,MongoDB, 檢自https://zh.wikipedia.org/wiki/MongoDB (Jul.7, 2019) 32. W. H. Wang, G. S. Hong and Y. S. Wong, Flank wear measurement by a threshold independent method with sub-pixel accuracy, International Journal of Machine Tools & Manufacture 46 (2006) 199–207 33. M. K. Balasundaram, M. M. Ratnam, In-Process Measurement of Surface Roughness using Machine Vision with Sub-Pixel Edge Detection in Finish Turning, International Journal of Precision engineering and manufacturing, 2014. Vol. 15, No. 11, pp. 2239-2249 34. B. M. Kumar and M. M. Ratnam, Machine vision method for non-contact measurement of surface roughness of a rotating workpiece, Sensor Review, (2015) Vol. 35 No. 1, pp. 10-19 |