帳號:guest(3.15.137.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):任聿浩
作者(外文):Jen, Yu-Hao
論文名稱(中文):疊加型電容式觸覺感測器之靈敏度改善
論文名稱(外文):Sensitivity Enhancement in Stacked Capacitive Tactile Sensors
指導教授(中文):羅丞曜
指導教授(外文):Lo, Cheng-Yao
口試委員(中文):陳榮順
蔡燿全
口試委員(外文):Chen, Rongshun
Tsai, Yao-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:106033570
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:93
中文關鍵詞:電容式觸覺感測器感測靈敏度聚二甲基矽氧烷
外文關鍵詞:Capacitive tactile sensorPDMSSensitivity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究之目的為透過改變介電層的結構設計以降低感測器之結構剛性,在不影響空間解析度的前提下,達成增加疊加型電容式觸覺感測器之感測靈敏度(Sensitivity)的成果。
本研究透過實驗證明,將彈性體介電層由實心結構更改為空心結構時,可以大幅度提升感測器的感測靈敏度。在正向施力為0.25 N時,空心結構之平均感測靈敏度為31.660 pF/N,為實心結構的597.4倍。而在剪力施力為1.5 N時,空心結構之平均感測靈敏度相較於實心結構在各個施力角度下也至少提升5.61倍的感測靈敏度。透過剪力角度公式分析,量測角度與施力角度之誤差在各方向下皆小於4°。
由研究之成果可知,透過更改介電層之結構以降低結構剛性,可大幅提升感測靈敏度,且可以保有原先設計之高空間解析度及角度量測功能。
The purpose of this study is to improve the sensitivity of stacked capacitive tactile sensors by changing the dielectric layer from solid to hollow to reduce the structural rigidity of the sensor. The result indicated that the sensitivity can be enhanced without affecting spatial resolution.
When the normal force is 0.25 N, the average sensitivity of the hollow structure is 31.660 pF/N, which is 597.4 times that of the solid structure, displaying great sensitivity enhancement. When the shear force is 1.5 N, the average sensitivity of the hollow structure is at least 5.61 times the sensitivity of the solid structure for all shear angles. Analyses also indicated that the error between the measurement angle and shear force application angle is less than 4°.
摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VIII
表目錄 XI
符號表 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 空間解析度要求 3
1.3.2 靈敏度提升 4
第二章 理論、元件設計與特性預測 16
2.1 平行板電容之推導 16
2.1.1 單一介電材料之電容值推導 16
2.1.2 多層介電材料之電容值推導 17
2.2 觸覺感測器之設計 18
2.2.1 實心疊加型觸覺感測器 18
2.2.2 空心疊加型觸覺感測器 19
2.3 感測靈敏度 19
2.4 角度演算法 21
2.5 模擬分析 22
2.5.1 正向力之模擬結果 23
2.5.2 剪力之模擬結果 24
第三章 實作 45
3.1 元件製作概述 45
3.1.1 電極製備 45
3.1.2 矽母模製作 46
3.1.3 PDMS介電層製作 48
3.1.4 對準貼合及翻模製程 50
3.2 量測儀器架構 51
3.2.1 施力系統 51
3.2.2 電訊號系統及量測軟體 51
第四章 研究結果分析 69
4.1 正向力量測結果 69
4.1.1 實心正向力量測結果 69
4.1.2 空心正向力量測結果 70
4.1.3 實心與空心之正向力量測結果比較 70
4.2 剪力量測結果 71
4.2.1 實心剪力量測結果 71
4.2.2 空心剪力量測結果 72
4.2.3 實心與空心之剪力量測結果比較 73
4.2.4 角度誤差之可能原因 75
第五章 結論與未來展望 90
5.1 結論 90
5.2 未來展望 91
參考文獻 92

[1] J. Lee, B. Bagheri, H. Gao, “A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems”, Manufacturing Letters, Vol. 3, 18-23(2015)
[2] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, K. Zieba , “End to End Learning for Self-Driving Cars”, arXiv:1604.07316(2016)
[3] P. K. Ang, W. Chen, A. T. S. Wee, K. P. Loh, “Solution-Gated Epitaxial Graphene as pH Sensor”, Journal of the American Chemical Society, 130(44),14392-14393(2008)
[4] Q. Kuang, C. Lao, Z. L. Wang, Z. Xie, “High-Sensitivity Humidity Sensor Based on a Single SnO2 Nanowire”, Journal of the American Chemical Society,129(19), 6070-6071(2007)
[5] Y. Lu, T. Zhu, L. Chen, X. Bao, “Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR”, Journal of Lightwave Technology, Vol. 28, Issue 22, 3243-3249(2010)
[6] D. Randjelović, A. Petropoulos, G. Kaltsas, M. Stojanović, Z. Lazić, Z. Djurić, M. Matić, “Multipurpose MEMS thermal sensor based on thermopiles”, Sensors and Actuators A: Physical, Vol. 141, Issue 2, 404-413(2008)
[7] T. S. J. Lammerink, N. R. Tas, M. Elwenspoek, J. H. J. Fluitman, “Micro-liquid flow sensor”, Sensors and Actuators A: Physical, Vol. 37-38, 45-50(1993)
[8] C. G. Núñez, W. T. Navaraj, E. O. Polat, R. Dahiya “Energy-Autonomous, Flexible, and Transparent Tactile Skin”, Advanced Functional Materials, Vol. 27, Issue.18(2017)
[9] http://www.riken.jp/en/pr/press/2015/20150223_2/
[10] http://www.sensorprod.com/dynamic/mattress.php
[11] R. Dahiya, G. Metta, M. Valle, G. Sandini, “Tactile sensing—From humans to humanoids”, IEEE Transactions on Robotics, Vol. 26, 1-20 (2010)
[12] K. H. Liao, C. Y. Lo, “Thermoresistive strain sensor and positioning method for roll-to-roll processes”, Sensors, Vol. 14, 8082-8095 (2014)
[13] Y. C. Wang, T. Y. Chen, R. Chen, C. Y. Lo, “Mutual capacitive flexible tactile sensor for 3-D image control”, Journal of Microelectromechanical Systems, Vol. 22, 804-814 (2013)
[14] J. Lee, W. Choi, Y. K. Yoo, K. S. Hwang, S. M. Lee, S. Kang, J. Kim, J. H. Lee, “A micro-fabricated force sensor using an all thin film piezoelectric active sensor”, Sensors, Vol. 14, 22199-22207 (2014)
[15] X. Liu, M. Mwangi, X. J. Lin, M. O’Brien, G. M. Whitesides, “Paper-based piezoresistive MEMS sensors”, Lab on a Chip, Vol. 11, 2189-2196 (2011)
[16] M. Chandra, S. Y. Ke, R. Chen, C. Y. Lo, “Vertically stacked capacitive tactile sensor with more than quadrupled spatial resolution enhancement from planar arrangement”, Sensors and Actuators A: Physical,263, 386–390 (2017)
[17] Y. H. Gao, “結構剛性於電容式觸覺感測器靈敏度之研究”, 國立清華大學碩士畢業論文(2018)
[18] K. W. Liao, M. T. Hou, H. Fujita, J. A. Yeh, “Liquid-based tactile sensing array with adjustable sensing range and sensitivity by using dielectric liquid”, Sensors and Actuators A: Physical, Vol. 231, 15-20 (2016)
[19] G. Liang, Y. Wang, D. Mei, K. Xi, Z. Chen “Flexible capacitive tactile sensor array with truncated pyramids as dielectric layer for three-axis force measurement”, Journal of Microelectromechanical Systems, Vol. 24, 1510-1519 (2015)
[20] B. C. K. Tee, A. Chortos, R. R. Dunn, G. Schwartz, E. Eason, Z. Bao, “Tunable Flexible Pressure Sensors using Microstructured Elastomer Geometries for Intuitive Electronics”, Advanced Functional Materials,Vol. 24, 5427-5434(2014)
[21] S. T. Chuang, “偏移電容式觸覺感測器之誤差分析與電極設計改良,” 國立清華大學碩士畢業論文(2014)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *