帳號:guest(3.12.123.2)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃悅真
作者(外文):Huang, Yue-Zhen
論文名稱(中文):以雷射前處理探討奈米碳片球之成長機制
論文名稱(外文):Study on the Growth Mechanism of Carbon Nano-Flake Balls by Laser Pretreatment
指導教授(中文):蔡宏營
指導教授(外文):Tsai, Hung-Yin
口試委員(中文):葉孟考
曾仕君
林啟瑞
口試委員(外文):Yeh, Meng-Kao
Tseng, Shih-chun
Lin, Ci-Ruei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:106033558
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:89
中文關鍵詞:奈米碳片球成長機制雷射
外文關鍵詞:CNFBGrowth MechanismLaser
相關次數:
  • 推薦推薦:0
  • 點閱點閱:581
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究目的在於探討雷射加工區經由微波電漿化學氣相法成長奈米碳片球的影響,期望可以圖形化奈米碳片球的成長分布範圍;同時也進行此碳系材料的成長機制之探討,希望能更進一步了解此材料特性,以增加其未來在場發射元件或是電子線路的應用潛力。
本研究選擇兩種對於矽晶圓表面形貌有著相當大差異的雷射參數進行奈米碳片球沉積結果的比較,並以影像處理技術量化其密度及分布狀況;利用光放射光譜儀即時監控系統配合短時間的成長方式,探討奈米碳片球的成長機制,同時利用掃描式電子顯微鏡、穿透式電子顯微鏡、拉曼光譜及X-光繞射分析等方式輔助檢測材料的特性。
研究結果發現利用雷射加工進行前處理的方式將導致矽晶圓表面生成二氧化矽,使得奈米碳片球無法有效沉積,若利用超聲波震盪處理將其移除後能於粗糙度較大的加工區有較大密度之沉積,以圖形化成長奈米碳片球,影像處理分析結果顯示其線寬可達到110.8 μm,於影響範圍內的沉積密度達92.8%。材料檢測與短時間成長發現,奈米碳片球的成長為於低功率及低腔體壓力環境下先成長出sp3鑽石成為核種;較高的功率及高腔體壓力下碳的鍵結則是改為sp2主導,導致石墨相沉積於鑽石核種上,形成片狀結構。
The purpose of this study is to discuss the influence of laser processing region on the growth of carbon nano-flake balls (CNFB) by a means of microwave plasma chemical vapor deposition (MPCVD). Also, it’s expected that growth ranges of CNFB can be patterned. In addition, the growth mechanism of CNFB is discussed to enhance the potential application of this material in field emission and electrical circuit.
In the present study, two different laser parameters with considerably different effect on silicon morphology are chosen to compare the growth status of CNFB. Image processing was then performed to quantify the density and distribution of CNFB. The mechanism of CNFB growing in a short-term manner was observed by using optical emission spectrometer (OES). Furthermore, material properties and morphology were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), Raman spectroscopy and x-ray diffraction (XRD).
The results showed that SiO2 was deposited on the surface of silicon after laser processing, which causes less deposition of CNFB. By using ultrasonication method which can remove oxide layer successfully, the defect with higher roughness is of higher deposition density and its growth range can thus be patterned. The image analysis revealed that the line width of CNFB can reach 110.8 μm, and the deposition density within the affected region is up to 92.8%. Examination of materials and growth in a short-term manner indicated that when the growth experiment began with low microwave power and chamber pressure, sp3-bonded diamond grew first and became nucleation clusters. In contrast, the experiment with higher microwave power and higher chamber pressure will result in the primary growth of sp2-bonded graphite which will deposit on diamond cluster to form carbon nano-flakes on the CNFB surface.
摘要 I
Abstract II
致謝 Ⅳ
目錄 Ⅵ
圖目錄 Ⅹ
表目錄 ⅩⅥ
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 4
2.1 石墨烯 4
2.1.1 石墨烯簡介 4
2.1.2 石墨烯之特性與應用 5
2.1.3 石墨烯之製備 6
2.2 碳化矽 10
2.2.1 碳化矽之簡介及分類 10
2.2.2 碳化矽之製備 10
2.3 人工合成鑽石 14
2.3.1 鑽石之簡介與製備 14
2.3.2 鑽石之反應機制 18
2.3.3 CVD鑽石之成核成長機制 18
2.3.4 氫與碳氫電漿對鑽石生長的影響 22
2.3.5 電漿溫度對鑽石生長的影響 23
2.4 奈米碳片球 24
2.5 雷射加工 27
2.5.1 雷射的簡介 27
2.5.2 雷射光的種類及特性 28
2.5.3 雷射之熱影響區 30
2.5.4 Nd:YAG雷射加工 31
2.6 碳材料之拉曼光譜檢測 36
2.7 碳材料的導電性質及其應用 39
2.7.1 奈米碳管之應用 39
2.7.2 石墨烯之應用 40
第三章 研究方法 45
3.1 實驗設計 45
3.2 實驗製程步驟 46
3.2.1 雷射加工 46
3.2.2 試片清洗 47
3.2.3 成長奈米碳片球 48
3.3 實驗儀器與材料 49
3.3.1 雷射雕刻機 49
3.3.2 超音波震盪機 50
3.3.3 微波電漿化學氣相沉積系統 50
3.3.4 掃描式電子顯微鏡 53
3.3.5 拉曼光譜分析儀 54
3.4 實驗藥品與氣體 55
第四章 研究結果與討論 56
4.1 奈米碳片球之特性 56
4.2 雷射加工對奈米碳片球成長之影響 59
4.2.1 雷射參數之影響 59
4.2.2 雷射加工後超音波震盪處理之影響 62
4.3 奈米碳片球之成核與成長之探討 70
4.3.1 奈米碳片球之TEM分析結果 72
4.3.2 奈米碳片球之拉曼光譜分析 75
4.3.3 奈米碳片球之XRD分析 76
4.3.4 短時間成長奈米碳片球之探討 77
4.3.5 奈米碳片球成長機制之推論 79
第五章 結論與未來展望 81
5.1 結論 81
5.2 未來展望 82
參考文獻 83

[1] A. Apicella, R. Aversa, and F. I. Petrescu, "Hybrid Ceramo-Polymeric Nano-Diamond Composites," American Journal of Engineering and Applied Sciences, vol. 11, pp. 766-782, 2018.
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, 2004.
[3] A. K. Geim and K. S. Novoselov, "The Rise of Graphene," Nature Materials, vol. 6, pp. 11-19, 2010.
[4] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, vol. 321, pp. 385-388, 2008.
[5] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene," Science, vol. 320, pp. 1308-1308, 2008.
[6] A. Peigney, C. Laurent, E. Flahaut, R. Bacsa, and A. Rousset, "Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes," Carbon, vol. 39, pp. 507-514, 2001.
[7] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, "Graphene, Related Two-dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage," Science, vol. 347, p. 1246501, 2015.
[8] K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, and K. Kim, "A Roadmap for Graphene," Nature, vol. 490, pp. 192-200, 2012.
[9] Y. Zhang, L. Zhang, and C. Zhou, "Review of Chemical Vapor Deposition of Graphene and Related Applications," Accounts of chemical research, vol. 46, pp. 2329-2339, 2013.
[10] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes," nature, vol. 457, pp. 706-710, 2009.
[11] A. Kumar, A. Voevodin, D. Zemlyanov, D. Zakharov, and T. S. Fisher, "Rapid Synthesis of Few-layer Graphene over Cu Foil," Carbon, vol. 50, pp. 1546-1553, 2012.
[12] L. Fang, W. Yuan, B. Wang, and Y. Xiong, "Growth of Graphene on Cu Foils by Microwave Plasma Chemical Vapor Deposition: The Effect of in-situ Hydrogen Plasma Post-treatment," Applied Surface Science, vol. 383, pp. 28-32, 2016.
[13] H. Matsunami and T. Kimoto, "Step-controlled Epitaxial Growth of SiC: High Quality Homoepitaxy," Materials Science and Engineering: R: Reports, vol. 20, pp. 125-166, 1997.
[14] D. Zhou and S. Seraphin, "Production of Silicon Carbide Whiskers from Carbon Nanoclusters," Chemical physics letters, vol. 222, pp. 233-238, 1994.
[15] J.-q. Hu, Q.-y. Lu, K.-b. Tang, Y.-t. Qian, G.-e. Zhou, X.-m. Liu, and J.-x. Wu, "A New Rapid Reduction− Carbonization Route to Nanocrystalline β-SiC," Chemistry of materials, vol. 11, pp. 2369-2371, 1999.
[16] Y. Zakharko, D. Rioux, S. Patskovsky, V. Lysenko, O. Marty, J. M. Bluet, and M. Meunier, "Direct Synthesis of Luminescent SiC Quantum Dots in Water by Laser Ablation," physica status solidi (RRL)–Rapid Research Letters, vol. 5, pp. 292-294, 2011.
[17] S. Yang, B. Kiraly, W. Y. Wang, S. Shang, B. Cao, H. Zeng, Y. Zhao, W. Li, Z. K. Liu, and W. Cai, "Fabrication and Characterization of Beaded SiC Quantum Rings with Anomalous Red Spectral Shift," Advanced Materials, vol. 24, pp. 5598-5603, 2012.
[18] J. J. Niu and J. N. Wang, "An Approach to the Synthesis of Silicon Carbide Nanowires by Simple Thermal Evaporation of Ferrocene onto Silicon Wafers," European journal of inorganic chemistry, vol. 2007, pp. 4006-4010, 2007.
[19] L. Lin, "Synthesis and Optical Property of Large-scale Centimetres-long Silicon Carbide Nanowires by Catalyst-free CVD Route under Superatmospheric Pressure Conditions," Nanoscale, vol. 3, pp. 1582-1591, 2011.
[20] J. Yun and D. S. Dandy, "Model of Morphology Evolution in the Growth of Polycrystalline β-SiC Films," Diamond and Related Materials, vol. 9, pp. 439-445, 2000.
[21] B. Wang, W. Liu, G. Wang, B. Liao, J. Wang, M. Zhu, H. Wang, and H. Yan, "Effect of Substrate Bias on β-SiC Films Prepared by PECVD," Materials Science and Engineering: B, vol. 98, pp. 190-192, 2003.
[22] R. Balmer, J. Brandon, S. Clewes, H. Dhillon, J. Dodson, I. Friel, P. Inglis, T. Madgwick, M. Markham, and T. Mollart, "Chemical Vapour Deposition Synthetic Diamond: Materials, Technology and Applications," Journal of Physics: Condensed Matter, vol. 21, pp. 1-23, 2009.
[23] W. G. Eversole, "Synthesis of Diamond," US3030187A, 1962.
[24] S. Arora and V. Vankar, "Field Emission Characteristics of Microcrystalline Diamond Films: Effect of Surface Coverage and Thickness," Thin Solid Films, vol. 515, pp. 1963-1969, 2006.
[25] D. Pradhan, Y. Lee, C. Pao, W. Pong, and I. Lin, "Low Temperature Growth of Ultrananocrystalline Diamond Film and its Field Emission Properties," Diamond and Related Materials, vol. 15, pp. 2001-2005, 2006.
[26] M. Tsuda, M. Nakajima, and S. Oikawa, "Epitaxial growth mechanism of diamond crystal in methane-hydrogen plasma," Journal of the American Chemical Society, vol. 108, pp. 5780-5783, 1986.
[27] R. F. Davis, "Diamond Films and Coatings," Noyes Publications(USA), 1993, p. 435, 1993.
[28] 宋健民, 鑽石合成: 全華, 2000.
[29] W. Yarbrough, "Current Research Problems and Opportunities in the Vapor Phase Synthesis of Diamond and Cubic Boron Nitride," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 9, pp. 1145-1152, 1991.
[30] W. A. Yarbrough and R. Messier, "Current Issues and Problems in the Chemical Vapor Deposition of Diamond," Science, vol. 247, pp. 688-696, 1990.
[31] S.-T. Lee, Z. Lin, and X. Jiang, "CVD Diamond Films: Nucleation and Growth," Materials Science and Engineering: R: Reports, vol. 25, pp. 123-154, 1999.
[32] W. Zhang, X. Sun, H. Peng, N. Wang, C. Lee, I. Bello, and S. Lee, "Diamond Nucleation Enhancement by Direct Low-energy Lon-beam Deposition," Physical Review B, vol. 61, p. 5579, 2000.
[33] B. Stoner, G. Ma, S. Wolter, W. Zhu, Y.-C. Wang, R. Davis, and J. Glass, "Epitaxial Nucleation of Diamond on β-SiC Via Bias-enhanced Microwave Plasma Chemical Vapor Deposition," Diamond and related materials, vol. 2, pp. 142-146, 1993.
[34] S. Yugo, T. Kanai, T. Kimura, and T. Muto, "Generation of Diamond Nuclei by Electric Field in Plasma Chemical Vapor Deposition," Applied Physics Letters, vol. 58, pp. 1036-1038, 1991.
[35] B. Stoner, G.-H. Ma, S. Wolter, and J. Glass, "Characterization of Bias-enhanced Nucleation of Diamond on Silicon by Invacuo Surface Analysis and Transmission Electron Microscopy," Physical Review B, vol. 45, pp. 11067-11084, 1992.
[36] S. M. Gates, R. R. Kunz, and C. M. Greenlief, "Silicon Hydride Etch Products from the Reaction of Atomic Hydrogen with Si (100)," Surface Science, vol. 207, pp. 364-384, 1989.
[37] D. Wittorf, W. Jäger, C. Dieker, A. Flöter, and H. Güttler, "Electron Microscopy of Interfaces in Chemical Vapour Deposition Diamond Films on Silicon," Diamond and Related Materials, vol. 9, pp. 1696-1702, 2000.
[38] J. Arnault, S. Hubert, and F. Le Normand, "Silicon Etching During the HFCVD Diamond Growth," The Journal of Physical Chemistry B, vol. 102, pp. 4856-4864, 1998.
[39] A. Gicquel, K. Hassouni, F. Silva, and J. Achard, "CVD Diamond Films: from Growth to Applications," Current Applied Physics, vol. 1, pp. 479-496, 2001.
[40] I. L. Chang, P. H. Tsai, and H. Y. Tsai, "Field Emission Characteristics of CNFB-CNT Hybrid Material Grown by One-step MPCVD," Diamond and Related Materials, vol. 69, pp. 229-236, 2016.
[41] P. H. Tsai and H. Y. Tsai, "Carbon Nano-flake Ball with a Sandwich-structure Composite of Diamond Core Covered by Graphite Using Single-step Microwave Plasma Chemical Vapor Deposition," Carbon, vol. 136, pp. 1-10, 2018.
[42] 丁勝懋, 雷射工程導論: 中央圖書出版社, 1995.
[43] D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Simulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Physical Review Letters, vol. 90, p. 027402, 2003.
[44] T. H. Maiman, "Stimulated Optical Radiation in Ruby," Nature, vol. 187, pp. 493-494, 1960.
[45] A. L. Schawlow and C. H. Townes, "Infrared and Optical Masers," Physical Review, vol. 112, pp. 1940-1949, 1958.
[46] W. M. Steen and J. Mazumder, Laser Material Processing: Springer Science & Business Media, 2010.
[47] J. Xu, H. Hu, and Y. Lei, "Morphological Features of Silicon Substrate by Using Different Frequency Laser Ablation in Air and Water," Applied Surface Science, vol. 317, pp. 666-671, 2014.
[48] A. Voevodin and J. Zabinski, "Laser Surface Texturing for Adaptive Solid Lubrication," Wear, vol. 261, pp. 1285-1292, 2006.
[49] J. Yang, S. Sun, M. Brandt, and W. Yan, "Experimental Investigation and 3D Finite Element Prediction of the Heat Affected Zone During Laser Assisted Machining of Ti6Al4V Alloy," Journal of Materials Processing Technology, vol. 210, pp. 2215-2222, 2010.
[50] J. Geusic, H. Marcos, and L. Van Uitert, "Laser Oscillations in Nd‐doped Yttrium Aluminum, Yttrium Gallium and Gadolinium Garnets," Applied Physics Letters, vol. 4, pp. 182-184, 1964.
[51] F. McClung and R. Hellwarth, "Giant Optical Pulsations from Ruby," Journal of Applied Physics, vol. 33, pp. 828-829, 1962.
[52] A. Slocombe and L. Li, "Laser Ablation Machining of Metal/Polymer Composite Materials," Applied Surface Science, vol. 154, pp. 617-621, 2000.
[53] E. György, I. Mihailescu, P. Serra, A. P. Del Pino, and J. Morenza, "Crown-like Structure Development on Titanium Exposed to Multipulse Nd: YAG Laser Irradiation," Applied Physics A, vol. 74, pp. 755-759, 2002.
[54] L. Vilhena, M. Sedlaček, B. Podgornik, J. Vižintin, A. Babnik, and J. Možina, "Surface Texturing by Pulsed Nd: YAG Laser," Tribology International, vol. 42, pp. 1496-1504, 2009.
[55] P. P. Dey and A. Khare, "Fabrication of Luminescent a-Si: SiO2 Structures by Direct Irradiation of High Power Laser on Silicon Surface," Applied Surface Science, vol. 307, pp. 77-85, 2014.
[56] C. Casiraghi, J. Robertson, and A. C. Ferrari, "Diamond-like Carbon for Data and Beer Storage," Materials today, vol. 10, pp. 44-53, 2007.
[57] P. Joseph, N.-H. Tai, Y.-C. Chen, H.-F. Cheng, and I.-N. Lin, "Transparent Ultrananocrystalline Diamond Films on Quartz Substrate," Diamond and Related Materials, vol. 17, pp. 476-480, 2008.
[58] K. E. Spear and J. P. Dismukes, Synthetic Diamond: Emerging CVD Science and Technology vol. 25: John Wiley & Sons, 1994.
[59] L. Hu, D. Hecht, and G. Grüner, "Percolation in Transparent and Conducting Carbon Nanotube Networks," Nano Letters, vol. 4, pp. 2513-2517, 2004.
[60] N. Saran, K. Parikh, D.-S. Suh, E. Munoz, H. Kolla, and S. K. Manohar, "Fabrication and Characterization of Thin Films of Single-walled Carbon Nanotube Bundles on Flexible Plastic Substrates," Journal of the American Chemical Society, vol. 126, pp. 4462-4463, 2004.
[61] S. Y. Ji, C. M. Ajmal, T. Kim, W. S. Chang, and S. Baik, "Laser Patterning of Highly Conductive Flexible Circuits," Nanotechnology, vol. 28, p. 165301, 2017.
[62] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of Large-area Graphene Films for High-performance Transparent Conductive Electrodes," Nano Letters, vol. 9, pp. 4359-4363, 2009.
[63] L. Huang, Y. Huang, J. Liang, X. Wan, and Y. Chen, "Graphene-based Conducting Inks for Direct Inkjet Printing of Flexible Conductive Patterns and Their Applications in Electric Circuits and Chemical Sensors," Nano Research, vol. 4, pp. 675-684, 2011.
[64] D. Wei, J. I. Mitchell, C. Tansarawiput, W. Nam, M. Qi, D. Y. Peide, and X. Xu, "Laser Direct Synthesis of Graphene on Quartz," Carbon, vol. 53, pp. 374-379, 2013.
[65] J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, "Laser-induced Porous Graphene Films from Commercial Polymers," Nature Communications, vol. 5, p. 5714, 2014.
[66] Y. Chyan, R. Ye, Y. Li, S. P. Singh, C. J. Arnusch, and J. M. Tour, "Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food," ACS Nano, vol. 12, pp. 2176-2183, 2018.
[67] S. Bohr, R. Haubner, and B. Lux, "Influence of Nitrogen Additions on Hot‐filament Chemical Vapor Deposition of Diamond," Applied physics letters, vol. 68, pp. 1075-1077, 1996.
[68] P. Baker, D. Goodloe, and Y. Vohra, "Morphological Transition in Diamond Thin-Films Induced by Boron in a Microwave Plasma Deposition Process," Materials, vol. 10, p. 1305, 2017.
[69] M. Sternberg, P. Zapol, T. Frauenheim, J. Carlisle, D. M. Gruen, and L. A. Curtiss, "Density functional based tight binding study of C 2 and CN deposition on (100) diamond surface," MRS Online Proceedings Library Archive, vol. 675, 2001.
[70] T. Y. Lee, J.-H. Han, S. H. Choi, J.-B. Yoo, C.-Y. Park, T. Jung, S. Yu, W. Yi, I. Han, and J. Kim, "Effects of Source Gases on the Growth of Carbon Nanotubes," Diamond and related materials, vol. 12, pp. 851-855, 2003.
[71] J. Nuwad, V. Sudarsan, and S. Kulshreshtha, "Pressure Dependent Studies on Synthesis of Ball-shaped Nanocrystalline Diamond," in AIP Conference Proceedings, 2015, p. 050156.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *