帳號:guest(18.227.81.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李家宏
作者(外文):Lee, Jia-Horng
論文名稱(中文):利用CMOS-MEMS技術單晶/垂直整合壓阻式觸覺感測器與電感式近接感測器
論文名稱(外文):Monolithic/Vertical Integration of Piezo-resistive Tactile Sensor and Inductive Proximity Sensor Using CMOS-MEMS Technology
指導教授(中文):方維倫
指導教授(外文):Fang, Wei-Leun
口試委員(中文):李昇憲
劉育嘉
口試委員(外文):Li, Sheng-Shian
Liu, Yu-Chia
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:106033554
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:110
中文關鍵詞:CMOS-MEMS單晶/垂直整合觸覺感測器近接感測器
外文關鍵詞:CMOS-MEMSmonolithic/vertical integrationtactile sensorproximity sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:333
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
智慧機器人的研發,受到廣泛的重視。為了協助機器人具備更良好的感知和人機互動的能力,觸覺感測可提供重要的外界訊息。若能整合觸覺感測器與近接感測器,則得以感知機械手臂與物體間之接觸力以及近接距離等資訊,以確保人機互動的安全,對於智慧機器人的應用格外重要。因此,本研究透過商用的標準半導體製程平台,TSMC 0.18μm 1P6M 以及0.35μm 2P4M,設計、製造、與整合壓阻式觸覺感測器與電感式近接感測器於單一晶片,並透過垂直整合的設計架構,有效縮小晶片的面積。本研究以螺旋線圈實現近接感測器,透過螺旋線圈的電感值變化,可以感測物體近接的距離;另外以內建壓阻式感測器之微機械結構實現觸覺力感測器,透過機械結構的形變和壓阻阻值的變化,可測得物體施與感測器的接觸力。由於電感和壓阻感測機制不會相互干擾,因此觸覺和近接感測單元可同時運作,所以本研究之感測晶片得以在物體接觸前後進行連續的監控,感測物體接觸前的近接距離和接觸後的接觸力。另外,為了滿足不同的應用需求,本研究除了開發簡易然而應用較廣泛的單軸正向接觸力感測器外,也開發較複雜但應用較特殊的三軸(正向與剪力)接觸力感測器。透過實驗的驗證,說明本研究提出的設計,達到預期的效果與能力。
To achieve more precise handling control and assure the safe interaction between human and robot, the integration of tactile and proximity sensing units is important for robot applications, for knowing the information of touching force and sensing distance between robot hands and objects.
This study demonstrates the monolithic/vertical integration of piezo-resistive tactile sensor and inductive proximity sensor using standard TSMC 0.18μm 1P6M and 0.35μm 2P4M CMOS process. The footprint reduction of sensing chip is achieved by the vertical integration of tactile and proximity sensing units. Before contact, the distance change between object and sensor leads to the inductance change of spiral coil; after contact, the force applied on sensor leads to the resistance change of bent piezo-resistors. Simultaneous detection for tactile and proximity modes is achieved to enable continuous monitoring before/after contact of object. Besides, due to no interference between two sensing mechanism, tactile and proximity sensing units can work independently.
摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VIII
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-2-1 觸覺感測器 2
1-2-2 近接感測器 7
1-2-3 感測器整合 8
1-3 研究目標 11
1-4 全文架構 12
第二章 感測原理與元件設計 26
2-1 TSMC CMOS製程平台 26
2-2 感測機制 27
2-2-1 壓阻式觸覺感測 27
2-2-2 電感式近接感測 31
2-3 元件設計 33
2-3-1 單軸觸覺感測器整合近接感測器 34
2-3-2 分散型三軸觸覺感測器整合近接感測器 36
2-3-3 集中型三軸觸覺感測器整合近接感測器 37
2-4 模擬分析 41
第三章 製程流程與結果 54
3-1 晶片後製程流程 54
3-1-1 單軸觸覺感測器整合近接感測器 54
3-1-2 分散型三軸觸覺感測器整合近接感測器 55
3-1-3 集中型三軸觸覺感測器整合近接感測器 56
3-2 晶片後製程結果 57
3-2-1 單軸觸覺感測器整合近接感測器 57
3-2-2 分散型三軸觸覺感測器整合近接感測器 58
3-2-3 集中型三軸觸覺感測器整合近接感測器 58
第四章 量測結果與討論 71
4-1 近接感測單元量測 71
4-1-1 物體材料 72
4-1-2 對準情況 72
4-2 觸覺感測單元量測 73
4-2-1 接觸測試 74
4-2-2 高分子測試 78
4-2-3 溫度測試 79
4-3 近接與觸覺之雙模式量測 80
4-4 三軸觸覺感測單元量測 81
4-4-1 分散型三軸觸覺感測器 82
4-4-2 集中型三軸觸覺感測器 83
第五章 結論與未來工作 98
5-1 結論 98
5-2 未來工作 100
參考文獻 105
[1] LOGICARE, http://logicare.blog.jp/
[2] H. Takao, K. Sawada, and M. Ishida, "Multifunctional smart tactile-image sensor with integrated arrays of strain and temperature sensors on single air-pressurized silicon diaphragm," Transducers, pp. 45-48, 2005.
[3] H. Okada, M. Yawata, M. Ishida, K. Sawada, and H. Takao, "A membrane type Si-MEMS tactile imager with fingerprint stucture for realization of slip sensing capability," IEEE MEMS, pp. 608-611, 2010.
[4] H. Takao, H. Okada, M. Ishida, T. Suzuki, and F. Oohira, "Flexible silicon triaxial tactile imager with integrated 800um-pitch sensor pixel structures on a diaphragm," IEEE Sensors, pp. 663-666, 2011.
[5] Y. Maeda, K. Terao, T. Suzuki, F. Shimokawa, and H. Takao, "A tactile sensor with the reference plane for detection abilities of frictional force and human body hardness aimed to medical applications," IEEE MEMS, pp. 253-256, 2015.
[6] H. Takao, M. Yawata, K. Sawada, and M. Ishida, "Two-dimensional silicon smart tactile image-sensor with single sensing diaphragm actuated by vibrating pressure for simultaneous detection of force and object hardness distributions," IEEE MEMS, pp. 602-605, 2006.
[7] TWENDY-ONE, http://www.twendyone.com/
[8] GLOBAL MARKET INSIGHTS, https://www.gminsights.com/
[9] H.-K. Lee, S.-I. Chang, and E. Yoon, “Dual-mode capacitive proximity sensor for robot application: implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes,” IEEE Sensors Journal, vol. 9, pp. 1748-1755, 2009.
[10] J. Engel, J. Chen, and C. Liu, "Development of polyimide flexible tactile sensor skin," Journal of Micromechanics and Microengineering, 13(3), pp. 359, 2003.
[11] E. S. Hwang, J. H. Seo, and Y. J. Kim, "A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics," Journal of Microelectromechanical Systems, 16(3), pp. 556-563, 2007.
[12] K. Kim, K.-R. Lee, Y.-K. Kim, D.-S. Lee, N.-K. Cho, W.-H. Kim, K.-B. Park, H.-D. Park, Y.-K. Park, J.-H. Kim, and J.-J. Park, "3-axes flexible tactile sensor fabricated by Si micromachining and packaging technology," IEEE MEMS, pp. 678-681, 2006.
[13] G. Vásárhelyi, M. Ádám, É. Vázsonyi, Z. Vízváry, A. Kis, I. Bársony, and C. Dücsõ, "Characterization of an integrable single-crystalline 3-D tactile sensor," IEEE Sensors Journal, vol. 6, pp. 928-934, 2006.
[14] K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, "A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material," Sensors and actuators A: Physical, vol. 127, pp. 295-301, 2006.
[15] H. Takahashi, A. Nakai, T.-V. Nguyen, K. Matsumoto, and I. Shimoyama, "A triaxial tactile sensor without crosstalk using pairs of piezoresistive beams with sidewall doping," Sensors and Actuators A: Physical, vol. 199, pp. 43-48, 2013.
[16] T.-V. Nguyen, B.-K. Nguyen, H. Takahashi, K. Matsumoto, and I. Shimoyama, "High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers," Sensors and Actuators A: Physical, vol. 215, pp. 167-175, 2014.
[17] H. K. Lee, J. Chung, S. I. Chang, and E. Yoon, "Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors," Journal of Microelectromechanical Systems, vol. 17, pp. 934-942, 2008.
[18] G. Liang, Y. Wang, D. Mei, K. Xi, and Z. Chen, "Flexible capacitive tactile sensor array with truncated pyramids as dielectric layer for three-axis force measurement," Journal of Microelectromechanical Systems, vol.24, pp.1510-1519, 2015.
[19] Y.-C. Liu, C.-M. Sun, L.-Y. Lin, M.-H. Tsai, and W. Fang, "Development of a CMOS-Based capacitive tactile sensor with adjustable sensing range and sensitivity using polymer fill-in," Journal of Microelectromechanical Systems, vol. 20, pp. 119-127, 2011.
[20] D. Alveringh, R.A. Brookhuis, R.J. Wiegerink, and G.J.M. Krijnen, "A large range multi-axis capacitive force/torque sensor realized in a single SOI wafer," IEEE MEMS, pp. 680- 683, 2014.
[21] W.-C. Lai, and W. Fang, "Novel two-stage CMOS-MEMS capacitive-type tactile-sensor with ER-fluid fill-in for sensitivity and sensing range enhancement," Transducers, pp. 1175-1178, 2015.
[22] E. S. Kolesar, and C. S. Dyson, "Object imaging with a piezoelectric robotic tactile sensor," Journal of Microelectromechanical Systems, 4(2), pp. 87-96, 1995.
[23] M.-S. Kim, H.-R. Ahn, S. Lee, C. Kim, and Y.-J. Kim, "A dome-shaped piezoelectric tactile sensor arrays fabricated by an air inflation technique," Sensors and Actuators A: Physical, vol. 212, pp. 151-158, 2014.
[24] S.-K. Yeh, H.-C. Chang, and W. Fang, "Development of CMOS MEMS inductive type tactile sensor with the integration of chrome steel ball force inteface," Journal of Micromechanics and Microengineering, vol.28, p. 044005, 2018.
[25] S. Wattanasarn, K. Noda, K. Matsumoto, and I. Shimoyama, "3D flexible tactile sensor using electromagnetic induction coils," IEEE MEMS, pp. 488-491, 2012.
[26] P.-H. Lo, C. Hong, S.-C. La, and W. Fang, "Implementation of inductive proximity sensor using nanoporous anodic aluminum oxide layer," Transducers, pp.1871-1874, 2011.
[27] Z. Chen and R. C. Luo, "Design and implementation of capacitive proximity sensor using microelectromechanical systems technology," IEEE Transaction on Industrial Electronics, 45(6), 1998.
[28] C.-F. Hu, J.-Y. Wang, Y.-C. Liu, M.-H. Tsai, and W. Fang, “Development of 3D carbon nanotube interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application,” Nanotechnology, vol. 24, p. 444006, 2013.
[29] R. Araki, F. Suga, T. Abe, H. Noma, and M. Sohgawa, “Gripping control of delicate and flexible object by electromotive manipulator with proximity and tactile combo MEMS sensor,” Transducers, pp. 1140-1143, 2017.
[30] H. Baltes, O. Brand, G. K. Fedder, C. Hierold, J. Korvink, and O. Tabata, CMOS MEMS: Advanced Micro and Nanosystems, vol.2, Weinheim, Germany, John Wiley&SonsInc, 2005.
[31] J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, and P. J. McWhorter, “Embedded micromechanical devices for the monolithic integration of MEMS with CMOS,” IEEE International Electron Devices Meeting, pp. 23.5.1-23.5.4, 1995.
[32] C.-M. Sun, C. Wang, M.-H. Tsai, H.-S. Hsieh, and W. Fang, “Monolithic integration of capacitive sensors using a double-side CMOS MEMS post process,” Journal of Micromechanics and Microengineering, vol. 19, p. 015023, 2009.
[33] S.-C. Chen, V. P. J. Chung, D.-J. Yao, and W. Fang, “Vertically integrated CMOS-MEMS capacitive humidity sensor and a resistive temperature detector for environment application,” Transducers, pp. 1453-1456, 2017.
[34] J. Detry, D. Koneval, and S. Blackstone, "A comparison of piezoresistance in polysilicon laser recrystallization polysilicon and single crystal silicon," Transducers, pp. 278-280, 1985.
[35] 杜少宇,"垂直整合電容與壓阻感測之CMOS-MEMS觸覺感測器以實現大感測範圍",清華大學動力機械工程學系碩士論文,2017。
[36] S.-Y. Tu, W.-C. Lai, and W. Fang, “Vertical integration of capacitive and piezo-resistive sensing units to enlarge the sensing range of CMOS-MEMS tactile sensor,” IEEE MEMS, pp. 1048-1051, 2017.
[37] K. Finkenzeller, RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communification. John Wiley & Sons, 2010.
[38] S. S. Mohan, M. M. Hershenson, S. P. Boyd, and T. H. Lee, "Simple accurate expressions for planar spiral inductances," IEEE Journal of Solid-State Circuits, vol.34, pp. 1419-1424, 1999.
[39] T.-W. Shen, K.-C. Chang, C.-M. Sun, and W. Fang, "Performance enhance of CMOS-MEMS thermoelectric infrared sensor by using sensing material and structure design," Journal of Micromechanics and Microengineering, vol. 29, p. 025007, 2019.
[40] G. K. Fedder, "CMOS-based sensors," IEEE Sensors, pp.125-128, 2005.
[41] P.-H. Lo, S.-H. Tseng, J.-H. Yeh, and W. Fang, "Development of a proximity sensor with vertically monolithic integrated inductive and capacitive sensing units," Journal of Micromechanics and Microengineering, vol. 23, p. 035013, 2013.
[42] M. Motoyoshi, "Through-silicon via (TSV)," Proceedings of the IEEE, vol. 97, pp. 43-48, 2009.
[43] C.-Y. Liu, M.-H. Li, H. G. Ranjith, and S.-S. Lee, "A 1 MHz 4 ppm CMOS-MEMS oscillator with built-in self-test and sub-mW ovenization power," IEEE International Electron Devices Meeting, pp. 26.7.1-26.7.4, 2016.
[44] S.-K. Yeh, and W. Fang, " Inductive micro tri-axial tactile sensor using a CMOS chip with a coil array," IEEE Electron Device Letters, vol. 40, pp. 620-623 , 2019.
[45] K. Watatani, K. Terao, F. Shimokawa, and H. Takao, "A monolithic fingerprint-like tactile sensor array realizing high resolution imaging of spatially distributed tactile information," IEEE MEMS, pp. 182-185, 2019.
[46] T. Okatani, and I. Shimoyama, "Evaluation of ground slipperiness during collision using MEMS local slip sensor," IEEE MEMS, pp. 823-825, 2019.
[47] W. Kim, E. Jo, J.-I. Lee, and J. Kim, "Measurement of friction force between directly integrated carbon nanotube bundles in tip-to-tip contact using MEMS tribometer platform," IEEE MEMS, pp. 845-848, 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *