帳號:guest(13.59.108.218)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):方奕博
作者(外文):Fang, Yi-Bo.
論文名稱(中文):感應式磁阻型絕對位置線型編碼器設計與分析
論文名稱(外文):Design and Analysis of Inductive Reluctance Absolute Position Linear Sensor
指導教授(中文):王培仁
指導教授(外文):Wang, Pei-Jen
口試委員(中文):宋震國
李明蒼
茆尚勳
口試委員(外文):Sung, Cheng-Kuo
Lee, Ming-Tsang
Mao, Shang-Hsun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:106033549
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:87
中文關鍵詞:絕對線型位置編碼器磁阻感測M型編碼理論
外文關鍵詞:absolute linear sensormagnetic reluctanceM-sequence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
目前市售絕對位置線型編碼器的種類根據操作原理區分為光學與磁性編碼器,根據使用環境及性能比較,磁性編碼器在精度上低於光學編碼器,但擁有極佳的環境強健性,因工業應用之編碼器必須接觸粉塵與油汙,磁性編碼器於惡劣的使用環境,仍可以維持常規精度,這是光學編碼器無法提供的。
本論文之研究目標為設計及分析線型磁性編碼器之感應式磁阻型絕對位置線型感測尺,採用電磁場電腦輔助工程分析軟體建立包含感測線圈及尺身的電磁分析模型,藉由尺身上開槽之幾何形狀形成磁阻不同的現象,輔以M序列編碼原理進行尺槽開孔之編排,配合感應線圈與激磁線圈的讀頭尺寸設計,深入探討感應線圈寬度、槽孔重疊寬度以及氣隙變化等做更進一步的分析探討。於擷取套裝軟體模擬的輸出感應電壓數據後,再經套裝數學分析軟體進行後處理,深入探討參數設計靈敏度及設計值範圍,用以提高位置訊號的讀取精度。本論文實驗部分為採用設計完成之尺身幾何參數,以精密數值控制切削加工的方式製作雛型尺,並於無塵室中架設於高精度的實驗平台,進行重現性及量測精度之驗證,確認理論及實驗製作之可行性及製作精度,完成讀取精度在4微米雛型尺。
Based on the operational principle, linear absolute position sensors are classified into optical and magnetic encoders. Although magnetic encoders are inferior to the optical encoders in measurement accuracy, they exhibit high robustness in various environments. In industrial applications, the linear encoders must operate under dust and oil contaminated conditions whereas magnetic encoders do not deteriorate in accuracy.
The objectives of this thesis are to design and analyze linear absolute position sensors based on the principle in inductive reluctance theory. With the help of M-sequence codes, ANSYS® CAE analysis, and AM decoding scripts in Matlab®, a prototype magnetic linear scale can be practically made to serve as benchmark examples. Design parameters, such as coil width, slot overlap, and air-gap width, are assessed for sensitivity studies. Furthermore, transient EM simulations coupled with Matlab Simulink® are conducted for transient modulation and decoding studies. Finally, the prototype scale was measured and compared with the commercial scale to demonstrate the accuracy is within +/- 4 um.
摘要 i
目錄 iv
圖目錄 vii
表目錄 xi
符號單位對照表 xii
第一章 簡介 1
1-1 研究背景 1
1-2 研究目的 3
1-3 文獻回顧 3
1-3-1 激磁頻率 4
1-3-2 不平衡振福 5
1-3-3 絕對型編碼器尺身與讀頭結構 6
1-3-4 增量型訊號解調與解碼方式 7
1-3-5 絕對編碼字串排列方式 8
第二章 基礎電磁學與編碼理論 19
2-1 電磁場基礎理論 19
2-2 時變磁場中迴路感應電壓 20
2-2-1 時變磁場中的靜止迴路 21
2-2-2 時變磁場中移動的迴路 22
2-3 渦電流 24
2-4 磁性材料與磁滯現象 25
2-5 磁性編碼理論簡介 28
2-6 編碼器訊號解析原理 29
2-7 絕對型編碼器編碼方式 31
第三章 模擬設計與分析 42
3-1 前言 42
3-2電磁場及分析軟體介紹 42
3-3絕對型編碼器模擬設計 43
3-3-1增量型部分二維模擬設計 44
3-3-2絕對型部分三維模擬設計 45
3-4 模型分析結果 46
3-4-1 增量型部分二維模擬分析 46
3-4-2 絕對型部分三維模擬分析 47
3-5絕對型模擬參數分析 48
3-5-1感應線圈寬度分析 48
3-5-2 尺身槽孔重疊寬度分析 50
3-5-3 尺身與讀頭間氣隙分析 50
第四章 實驗架設與結果 66
4-1尺身加工製造 66
4-2編碼器實驗樣品介紹 66
4-3量測系統介紹與架設 67
4-3-1編碼器載台架設 67
4-3-2動力驅動與控制系統介紹 68
4-4編碼器量測與分析 69
第五章 結論與討論 82
5-1 結論 82
5-2 未來展望 83
參考文獻 86
[1] Bera, S. C., Sarkar, R., & Bhowmick, M. (2011), “Study of a modified differential inductance measurement circuit as position transducer of a power cylinder”, IEEE Trans. on Instrumentation and Measurement, 61(2), pp.530-538.
[2] Aschenbrenner, B., & Zagar, B. G. (2014), “Analysis and validation of a planar high-frequency contactless absolute inductive position sensor”, IEEE Trans. on Instrumentation and Measurement, 64(3), pp.768-775.
[3] “編碼器種類、原理與運動量測方法“, retrieve from September 14, 2018, NATIONAL INSTRUMENT, http://www.ni.com/tutorial/7109/zht/
[4] Fericean, S., & Droxler, R. (2007), “New non-contacting inductive analog proximity and inductive linear displacement sensors for industrial automation”, IEEE Sensors Journal, 7(11), pp.1538-1545.
[5] Trankler, H. R., & Obermeier, E. (1998), Sensortechnik-Handbuch fur Praxis und Wissenschaft.
[6] Pallas-Areny, R., & Webster, J. G. (2012). Sensors and signal conditioning. John Wiley & Sons.
[7] Norhisam, M., Norrimah, A., Wagiran, R., Sidek, R. M., Mariun, N., & Wakiwaka, H. (2008), “Consideration of theoretical equation for output voltage of linear displacement sensor using meander coil and pattern guide”, Sensors and Actuators A: Physical, 147(2), pp.470-473.
[8] George, B., Tan, Z., & Nihtianov, S. (2017), “Advances in capacitive, eddy current, and magnetic displacement sensors and corresponding interfaces”, IEEE Trans. on Industrial Electronics, 64(12), pp.9595-9607.
[9] Li, Y., Sheng, X., Lian, M., & Wang, Y. (2016), ”Influence of tilt angle on eddy current displacement measurement”, Nondestructive Testing and Evaluation, 31(4), pp.289-302.
[10] Theodoulidis, T. (2005), ”Analytical model for tilted coils in eddy-current nondestructive inspection”, IEEE Trans. on Magnetics, 41(9), pp.2447-2454.
[11] Vasiloiu, V. (2003). U.S. Patent No. 6,611,138. Washington, DC: U.S. Patent and Trademark Office.
[12] Matsumoto, T., & Ohno, K. (1996). U.S. Patent No. 5,563,408. Washington, DC: U.S. Patent and Trademark Office.
[13] Ohno, K., Hattori, T., & Matsumoto, T. (1991). U.S. Patent No. 5,068,529. Washington, DC: U.S. Patent and Trademark Office.
[14] Vasiloiu, V., & Eisschiel, H. (2015). U.S. Patent No. 9,013,192. Washington, DC: U.S. Patent and Trademark Office.
[15] 洪麒富(2018)。感應式磁阻型線性位置編碼器設計與分析,國立清華大學動力機械工程學系碩士學位論文,未出版,國立清華大學
[16] Nagase, T., & Higashi, K. (1992). U.S. Patent No. 5,117,105. Washington, DC: U.S. Patent and Trademark Office.
[17] David K. Cheng (2014). Field and Wave Electromagnetic, 2nd Ed. Pearson College Div, pp.332-339.
[18] “Absolute encoder based on the AMOSIN-Inductive Measuring Principle“, retrieve from October 30, 2018, AmoAutomatisierung, http://www.amogmbh.com/fileadmin/amo/pro-dukte/prospekt/Prospekt_ABSOLUTE.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *