帳號:guest(3.149.23.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊凱驛
作者(外文):Yang, Kai-Yi
論文名稱(中文):動態次結構系統之可次結構性分析與驗證
論文名稱(外文):Analysis and verification of substructurability for dynamically substructured systems
指導教授(中文):宋震國
指導教授(外文):Sung, Cheng-Kuo
口試委員(中文):林子剛
徐勝均
口試委員(外文):Lin, Tzu-Kang
Xu, Sheng-Dong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:106033536
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:120
中文關鍵詞:動態次結構測試複合測試可次結構性控制模態
外文關鍵詞:Dynamically substructured system testingHybrid testingSubstructurabilityControl modes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:266
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文提出以基礎自動控制理論分析動態次結構系統(DSS)之可次結構性,來預判DSS測試之效能、控制模態與仿真程度,並分析DSS測試保真度與受測元件參數之關聯性。DSS為複合測試的一種,其策略是將受測工程系統拆解為物理和數值次結構兩種子系統,其中參數已知且容易進行數值模擬的元件,利用數值建模的方式歸入「數值次結構」,而參數未知、具非線性行為且欲觀測之重要元件,則以全比例實際建構於「物理次結構」,物理次結構中安裝致動器和感測器,以同步數值模型與物理原型之介面訊號。
DSS測試不僅有致動器之控制補償問題,已有許多文獻提出DSS測試存在「動態性」限制,若拆解後的物理或數值次結構之原生參數不理想,易引起測試不穩定、測試結果失真或不可靠。因此本論文旨建構一套分析理論,統整「參數設計評估」、「控制模態設定」與「致動器選用」以預判分析工程系統之可次結構性及動態表現,避免低效率或無效之DSS測試,並評估合理正確的改善措施。
本論文提出一「可次結構性基礎函數」推導流程,並應用自動控制理論之頻域分析方法與靈敏度相關理論至可次結構性函數分析,以評估位移與力控制模態之穩定度、反應速度、暫態規格與頻域規格,再透過調整拆解方式或修改參數設計,可移動可次結構性函數之主極點,使DSS測試擁有更佳的效果。本論文以雙質量-彈簧-阻尼DSS與液壓阻尼DSS兩個工程系統為例,推導相關運動方程式與可次結構性函數,以數學、模擬與實驗方法驗證本論文的理論分析。本論文提出之可次結構性相關理論與知識,涵攝DSS測試之元件參數設計、控制模態設定與致動器系統選用,有助於工程實務上快速且有效地尋找出正確的DSS實踐方案,這是迄今所有文獻未能做到的。
Substructurability theory is proposed to analyze the feasibility and suitability of dynamically substructured system (DSS) testing methods, and substructurability index quantifies the implementation efficiency of DSS tests. DSS is one of the hybrid testing techniques, which decompose an engineering system into numerical and physical substructures. The known linear parameters will be simulated in numerical substructure, while the critical unknown parameters may involve nonlinear behavior will be naturally tested in physical substructured. During the testing, the transfer system carries out the unwanted dynamic arises synchronization error and unsuccessful testing. Therefore, the controller designs are crucial for successful testing in real-time.
However, it is noted that the dynamic properties of the substructures sometimes influence the synchronization stability and accuracy. Therefore, this thesis construct a set of analytical theory, and integrate Dynamic properties, Selection of control mode and Selection of transfer system to predict the substructure and dynamic performance of engineering systems and avoid the inefficiency.
In this study, using frequency analysis and sensitivity theory to propose the stability, reaction speed, transient specification and frequency domain specification of the overall displacement control mode and force control mode, which can be determined by the "Substructurability function". Through proper adjustment or design parameters, The dominant pole is far away from the imaginary axis or changing the dominant pole damping characteristics, so that the DSS test has a better effect.The substructurability theory is contributive to interpret the Dynamic properties, selection of control mode and selection of transfer system and is helpful to search for reasonable solutions.
中文摘要 I
Abstract III
目錄 IV
圖目錄 VII
表目錄 X
縮寫及符號說明 XI
第一章 緒論 1
1.1 文獻回顧 1
1.1.1 動態次結構系統介紹 3
1.2 研究動機 7
1.3 研究目標 8
1.4 本文架構 8
第二章 動態次結構系統之可次結構性概念 10
2.1 動態次結構系統(DSS)之表達式推導 10
2.2 位移控制模態介紹 16
2.3 力控制模態介紹 20
2.4 討論位移與力控制模態之差異 23
第三章 雙質量-彈簧-阻尼(MSD-MSD)DSS之可次結構性與控制模態分析 26
3.1 MSD-MSD DSS之可次結構性函數推導 26
3.1.1 被仿真系統運動方程式推導 26
3.1.2 位移控制模態之可次結構性表達式 28
3.1.3 力控制模態與位移訊號回傳之可次結構性表達式 31
3.1.4 力控制模態與速度訊號回傳之可次結構性表達式 34
3.2 位移與力控制模態之可次結構性分析 36
3.3 整合GTS動態之可次結構性分析 37
3.4 參數調變之可次結構性分析 39
第四章 液壓阻尼DSS之可次結構性與控制模態分析 44
4.1 被仿真系統運動方程式推導 44
4.2 單軸與雙軸測試之實驗組立與實驗方法 48
4.2.1 單軸液壓阻尼DSS之表達式推導 48
4.2.2 雙軸液壓阻尼DSS之表達式推導 49
4.3 單軸液壓阻尼DSS測試之可次結構性函數推導 51
4.3.1 位移控制模態之可次結構性表達式 51
4.3.2 力控制模態之可次結構性表達式 52
4.4 雙軸液壓阻尼DSS測試之可次結構性函數推導 54
4.4.1 位移控制模態之可次結構性表達式 54
4.4.2 力控制模態之可次結構性表達式 56
4.4.3 位移與力控制模態之可次結構性表達式 58
4.5 位移與力控制模態之可次結構性分析 58
4.6 整合GTS動態之可次結構性分析 60
4.7 參數調變之可次結構性分析 63
第五章 模擬與實驗驗證 66
5.1 MSD-MSD DSS之模擬參數設計 66
5.2 MSD-MSD DSS之模擬結果與分析 70
5.2.1 位移控制模態之模擬結果 71
5.2.2 力控制模態之模擬結果 76
5.2.3 可次結構性分析與驗證 81
5.3 液壓阻尼DSS之實驗設備與參數設計介紹 87
5.4 液壓阻尼DSS之實驗結果與分析 94
5.4.1 單軸控制之實驗結果 94
5.4.2 雙軸控制之實驗結果 108
第六章 結論與未來工作 115
6.1 結論 115
6.2 未來工作 116
參考文獻 117

1. K.C. Tsai, P.C. Hsiao, K.J. Wang, Y.T. Weng, and M.L. Lin, K.C. Lin, C.H. Chen, J.W. Lai, and S.L. Lin, Pseudo-dynamic tests of a full-scale CFT/BRB frame—Part I: Specimen design, experiment and analysis. Earthquake Engineering & Structural Dynamics, 2008. 37(7): pp. 1081-1098.
2. R. Trigui, B. Jaenneret, B. Malaquin, F. Badlin, and C. Plasse, Hardware in the loop simulation of a diesel parallel mild-hybrid electric vehicle. in Vehicle Power and Propulsion Conference, VPPC. 2007. IEEE.
3. S.Y. Chu, L.Y. Lu, and S.W. Yeh, Real‐time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table. Structural Control and Health Monitoring, 2018. 25(3): pp. 1-19.
4. J.Y. Jiang, The Development of Real-Time Finite Element Dynamically Substructured Systems. MS Thesis, Department of Power Mechanical Engineering. National Tsing Hua University, Hsinchu, Taiwan, 2013: pp. 1-102.
5. Z. Wang, B. Wu, G. Xu, and O.S. Bursi, An improved equivalent force control algorithm for hybrid seismic testing of nonlinear systems. Structural Control and Health Monitoring, 2018. 25(2): pp. 2076.
6. C. Chen, J.M. Ricles, T.M. Marullo, and O. Mercan, Real‐time hybrid testing using the unconditionally stable explicit CR integration algorithm. Earthquake Engineering & Structural Dynamics, 2009. 38(1): pp. 23-44.
7. O.S. Bursi, C. Jia, L. Vulcan, S.A. Neild, and D.J. Wagg, Rosenbrock‐based algorithms and subcycling strategies for real‐time nonlinear substructure testing. Earthquake Engineering & Structural Dynamics, 2011. 40(1): pp. 1-19.
8. B. Wu, Z. Wu, and O.S. Bursi, Actuator dynamics compensation based on upper bound delay for real‐time hybrid simulation. Earthquake Engineering & Structural Dynamics, 2013. 42(12): pp. 1749-1765.
9. J. Liu, S.J. Dyke, H.J. Liu, X.Y. Gao, and B. Phillips, A novel integrated compensation method for actuator dynamics in real‐time hybrid structural testing. Structural Control and Health Monitoring, 2013. 20(7): pp. 1057-1080.
10. R. Enokida, D.P. Stoten, and K. Kajiwara, Application of the nonlinear substructuring control method to nonlinear 2-degree-of-freedom systems. in Journal of Physics: Conference Series. 2016. IOP Publishing.
11. X. Gao, N. Castaneda, and S.J. Dyke, Real time hybrid simulation: from dynamic system, motion control to experimental error. Earthquake Engineering & Structural Dynamics, 2013. 42(6): pp. 815-832.
12. D.P. Stoten, A comparative study and unification of two methods for controlling dynamically substructured systems. Earthquake Engineering & Structural Dynamics, 2017. 46(2): pp. 317-339.
13. T. Yamaguchi and D.P. Stoten, Synthesised H ∞/μ Control Design for Dynamically Substructured Systems. in Journal of Physics: Conference Series. 2016. IOP Publishing.
14. P.C. Chen and K.C. Tsai Dual compensation strategy for real‐time hybrid testing. Earthquake Engineering & Structural Dynamics, 2013. 42(1): pp. 1-23.
15. P.C. Chen, A Study on Real-time Hybrid Testing Method for Earthquake Engineering. Doctoral Dissertation, Department of Civil Engineering. National Taiwan University, Taipei, Taiwan, 2013: pp. 1-171.
16. B. Wu, L. Deng, and X. Yang, Stability of central difference method for dynamic real‐time substructure testing. Earthquake Engineering & Structural Dynamics, 2009. 38(14): pp. 1649-1663.
17. O.S. Bursi, S.A. Neild, and D.J. Wagg, Novel coupling Rosenbrock‐based algorithms for real‐time dynamic substructure testing. Earthquake Engineering & Structural Dynamics, 2008. 37(3): pp. 339-360.
18. M.I. Wallace, D.J. Wagg, and S.A. Neild, An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2005. The Royal Society.
19. M.I. Wallace, J. Sieber, S.A. Neild, D.J. Wagg, and B. Krauskopf, Stability analysis of real‐time dynamic substructuring using delay differential equation models. Earthquake engineering & structural dynamics, 2005. 34(15): p. 1817-1832.
20. P.J. Gawthrop, S.A. Neild, and D.J. Wagg, Causality in real-time dynamic substructure testing. Mechatronics, 2009. 19(7): pp. 1105-1115.
21. T.R. Liang, Hybrid Testing of Servo-Motor Controlled Mass Damper System. MS Thesis, Department of Civil Engineering. National Cheng Kung University, Tainan, Taiwan, 2013: pp. 1-264.
22. C. Lee, Explore the integration of heterogeneous systems in hybrid dynamic testing technology. MS Thesis, Department of Power Mechanical Engineering. National Tsing Hua University, Hsinchu, Taiwan, 2014: p. 1-56.
23. D.P. Stoten, J.Y. Tu, and G. Li, Synthesis and control of generalized dynamically substructured systems. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2009. 223(3): pp. 371-392.
24. C.H. Chen, Analysis on substructurability and multiple control modes of dynamically substructured systems. MS Thesis, Department of Power Mechanical Engineering. National Tsing Hua University, Hsinchu, Taiwan, 2018: pp. 1-80.
25. C.I. Huang, Substructurability index and substructuring fidelity. MS Thesis, Department of Power Mechanical Engineering. National Tsing Hua University, Hsinchu, Taiwan, 2016.
26. C.Y. Chen, Development and verification of state-based substructurability theory for dynamically substructured system. MS Thesis, Department of Power Mechanical Engineering. National Tsing Hua University, Hsinchu, Taiwan, 2014: pp. 1-131.
27. A. Maghareh, S.J. Dyke, A. Prakash, and G.B. Bunting, Establishing a predictive performance indicator for real‐time hybrid simulation. Earthquake Engineering & Structural Dynamics, 2014. 43(15): pp. 2299-2318.
28. A. Maghareh, S.J. Dyke, S. Rabieniaharabar, and A. Prakash, Predictive stability indicator: a novel approach to configuring a real‐time hybrid simulation. Earthquake Engineering & Structural Dynamics, 2017. 46(1): pp. 95-116.
29. J.Y. Tu and J.Y. Jiang, Substructurability and exact synchronisation analysis. Structural Control & Health Monitoring, 2013. 20(12): pp. 1410-1423.
30. C.L. Hsu, Experimental Verification and Performance Evaluation of Leverage-type Stiffness Controllable Mass Damper System. MS Thesis, Department of Civil Engineering. National Cheng Kung University, Tainan, Taiwan, 2016: pp. 1-261.
31. J.Y. Tu, Development of numerical‐substructure‐based and output‐based substructuring controllers. Structural Control and Health Monitoring, 2013. 20(6): pp. 918-936.
32. J.Y. Tu, Dynamics, control and real-time issues related to substructuring techniques: application to the testing of isolated structure systems. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2013. 227(6): pp. 507-522.
33. J.Y. Tu and J.Y. Jiang, A Numerical-Substructure-Based Approach for the Synthesis of Substructurability and Exact Synchronisation Controllers. Structural Control and Health Monitoring, 2012.
34. Y.N. Kyrychko, K.B. Blyuss, A. Gonzalez-Buelga, S.J. Hogan, and D.J. Wagg. Real-time dynamic substructuring in a coupled oscillator–pendulum system. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2006. The Royal Society.
35. C.Y. Chen, Comparison of control strategies for real-time dynamically substructure systems. MS Thesis, Department of Power Mechanical Engineering. National Tsing Hua University, Hsinchu, Taiwan, 2013: pp. 1-76.
36. H.T. Yang, Development of synchronisation control system for base-isolated structure dynamic substructuring tests. MS Thesis, Department of Power Mechanical Engineering. National Tsing Hua University, Hsinchu, Taiwan, 2012 : pp. 1-73.
37. 徐安, 即時複合實驗於互制式減震系統之驗證, 土木工程學系, 國立成功大學, 2019 (指導教授:盧煉元).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *