|
[1] Y. Inokawa, K. Inaoka, F. Sonohara, M. Hayashi, M. Kanda, and S. Nomoto, "Molecular alterations in the carcinogenesis and progression of hepatocellular carcinoma: Tumor factors and background liver factors," Oncology letters, vol. 12, no. 5, p. 3662-3668, 2016. [2] C. M. Fernández-Rodríguez and M. L. Gutiérrez-García, "Prevention of hepatocellular carcinoma in patients with chronic hepatitis B," World journal of gastrointestinal pharmacology and therapeutics, vol. 5, no. 3, p. 175, 2014. [3] O. Hamed, E. T. Kimchi, M. Sehmbey, N. J. Gusani, J. T. Kaifi, and K. Staveley-O’Carroll, "Impact of genetic targets on cancer therapy: hepatocellular cancer," Impact of Genetic Targets on Cancer Therapy: Springer, p. 67-90, 2013. [4] Z. S. Niu, X. J. Niu, and W. H. Wang, "Genetic alterations in hepatocellular carcinoma: An update," World journal of gastroenterology, vol. 22, no. 41, p. 9069, 2016. [5] G. Baffy, "Hepatocellular carcinoma in non-alcoholic fatty liver disease: epidemiology, pathogenesis, and prevention," Journal of clinical and translational hepatology, vol. 1, no. 2, p. 131, 2013. [6] C. de Martel, D. Maucort‐Boulch, M. Plummer, and S. Franceschi, "World‐wide relative contribution of hepatitis B and C viruses in hepatocellular carcinoma," Hepatology, vol. 62, no. 4, p. 1190-1200, 2015. [7] H. Nakayama and T. Takayama, "Management before hepatectomy for hepatocellular carcinoma with cirrhosis," World journal of hepatology, vol. 7, no. 20, p. 2292, 2015. [8] Q. Yu, X. Yang, W. Duan, C. Li, Y. Luo, and S. Lu, "miRNA‑346 promotes proliferation, migration and invasion in liver cancer," Oncology letters, vol. 14, no. 3, p. 3255-3260, 2017. [9] V. Srinivasan, V. K. Pamula, and R. B. Fair, "An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids," Lab on a Chip, vol. 4, no. 4, p. 310-315, 2004. [10] J. Whitesides, M. Hall, R. Anchan, and A. S. LaMantia, "Retinoid signaling distinguishes a subpopulation of olfactory receptor neurons in the developing and adult mouse," J Comp Neurol, vol. 394, no. 4, p. 445-61, 1998. [11] E. M. Materne, A. G. Tonevitsky, and U. Marx, "Chip-based liver equivalents for toxicity testing-organotypicalness versus cost-efficient high throughput," Lab Chip, vol. 13, no. 18, p. 3481-95, 2013. [12] S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber and M. Toner, "Isolation of rare circulating tumour cells in cancer patients by microchip technology," Nature, vol. 450, no. 7173, p. 1235-9, 2007. [13] V. J. Navarro and J. R. Senior, "Drug-related hepatotoxicity," New England Journal of Medicine, vol. 354, no. 7, p. 731-739, 2006. [14] R. S. O'shea, S. Dasarathy, and A. J. McCullough, "Alcoholic liver disease," Hepatology, vol. 51, no. 1, p. 307-328, 2010. [15] M. Pirmohamed, S. James, S. Meakin, C. Green, A. K. Scott, T. J. Walley, K. Farrar, B. K. Park, A. M. Breckenridge, "Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients," Bmj, vol. 329, no. 7456, p. 15-19, 2004. [16] S. Chitturi and G. C. Farrell, "Drug‐induced liver disease," Schiff's diseases of the liver, p. 703-783, 2011. [17] B. Morgan, A.L. Thomas, J. Drevs, J. Hennig, M. Buchert, A. Jivan, M. A. Horsfield, K. Mross, H. A. Ball, L. Lee, W. Mietlowski, S. Fuxuis, C. Unger, K. O'Byrne, A. Henry, G. R. Cherryman, D. Laurent, M. Dugan, D. Marmé, W. P. Steward, "Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies," Journal of Clinical Oncology, vol. 21, no. 21, p. 3955-3964, 2003. [18] P. M. van Midwoud, M. T. Merema, E. Verpoorte, and G. M. Groothuis, "A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices," Lab on a Chip, vol. 10, no. 20, p. 2778-2786, 2010. [19] P. R. O. de Montellano and J. J. De Voss, "Substrate oxidation by cytochrome P450 enzymes," Cytochrome P450: Springer, p. 183-245, 2005. [20] R. Williams, S. Schalm, and J. O'Grady, "Acute liver failure: redefining the syndromes," The Lancet, vol. 342, no. 8866, p. 273-275, 1993. [21] g. search. [22] J. Folkman, "The role of angiogenesis in tumor growth," in Seminars in cancer biology, vol. 3, no. 2, p. 65-71, 1992. [23] E. C. Woodhouse, R. F. Chuaqui, and L. A. Liotta, "General mechanisms of metastasis," Cancer: Interdisciplinary International Journal of the American Cancer Society, vol. 80, no. S8, p. 1529-1537, 1997. [24] I. J. Fidler, "Critical determinants of cancer metastasis: rationale for therapy," Cancer chemotherapy and pharmacology, vol. 43, no. 1, p. S3-S10, 1999. [25] A. F. Chambers, G. N. Naumov, H. J. Varghese, K. V. Nadkarni, I. C. MacDonald, and A. C. Groom, "Critical steps in hematogenous metastasis: an overview," Surgical oncology clinics of North America, vol. 10, no. 2, p. 243-255, 2001. [26] J. B. Wyckoff, J. G. Jones, J. S. Condeelis, and J. E. Segall, "A critical step in metastasis: in vivo analysis of intravasation at the primary tumor," Cancer research, vol. 60, no. 9, p. 2504-2511, 2000. [27] A. F. Chambers, A. C. Groom, and I. C. MacDonald, "Metastasis: dissemination and growth of cancer cells in metastatic sites," Nature Reviews Cancer, vol. 2, no. 8, p. 563, 2002. [28] R. Radinsky, "Modulation of tumor cell gene expression and phenotype by the organspecific metastatic environment," Cancer and Metastasis Reviews, vol. 14, no. 4, p. 323-338, 1995. [29] I. J. Fidler, "Modulation of the organ microenvironment for treatment of cancer metastasis," JNCI: Journal of the National Cancer Institute, vol. 87, no. 21, p. 1588-1592, 1995. [30] R. Radinsky, "Molecular mechanisms for organ-specific colon carcinoma metastasis," European Journal of Cancer, vol. 31, no. 7-8, p. 1091-1095, 1995. [31] R. Radinsky and L. M. Ellis, "Molecular determinants in the biology of liver metastasis," Surgical oncology clinics of North America, vol. 5, no. 2, p. 215-229, 1996. [32] T. H. Kuo, T. Kubota, M. Watanabe, T.. Furukawa, T Teramoto, K. Ishibiki, M. Kitajima, A. R. Moossa, S. Penman, and R. M. Hoffman, "Liver colonization competence governs colon cancer metastasis," Proceedings of the National Academy of Sciences, vol. 92, no. 26, p. 12085-12089, 1995. [33] M. Baggiolini, "Chemokines and leukocyte traffic," Nature, vol. 392, no. 6676, p. 565, 1998. [34] J. J. Campbell and E. C. Butcher, "Chemokines in tissue-specific and microenvironment-specific lymphocyte homing," Current opinion in immunology, vol. 12, no. 3, p. 336-341, 2000. [35] B. Homey, A. Müller, and A. Zlotnik, "Chemokines: agents for the immunotherapy of cancer?," Nature Reviews Immunology, vol. 2, no. 3, p. 175, 2002. [36] S. Yang, K. F. Leong, Z. Du, and C. K. Chua, "The design of scaffolds for use in tissue engineering. Part I. Traditional factors," Tissue Eng, vol. 7, no. 6, p. 679-89, 2001. [37] L. G. Griffith and M. A. Swartz, "Capturing complex 3D tissue physiology in vitro," Nat Rev Mol Cell Biol, vol. 7, no. 3, p. 211-24, 2006. [38] J. L. Drury and D. J. Mooney, "Hydrogels for tissue engineering: scaffold design variables and applications," Biomaterials, vol. 24, no. 24, p. 4337-4351, 2003. [39] F. Q. Nie, M. Yamada, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, "On-chip cell migration assay using microfluidic channels," Biomaterials, vol. 28, no. 27, p. 4017-4022, 2007. [40] B. M. Baker and C. S. Chen, "Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues," J Cell Sci, vol. 125, no. Pt 13, p. 3015-24, 2012. [41] S. Nemir, H. N. Hayenga, and J. L. West, "PEGDA hydrogels with patterned elasticity: Novel tools for the study of cell response to substrate rigidity," Biotechnol Bioeng, vol. 105, no. 3, p. 636-44, 2010. [42] F. Shen, Y. L. Cui, L. F. Yang, K. D. Yao, X . H. Dong, W. Y. Jia, H . D. Shi, "A study on the fabrication of porous chitosan/gelatin network scaffold for tissue engineering," Polymer International, vol. 49, no. 12, p. 1596-1599, 2000. [43] D. Huh, G. A. Hamilton, and D. E. Ingber, "From 3D cell culture to organs-on-chips," Trends Cell Biol, vol. 21, no. 12, p. 745-54, 2011. [44] Y. C. Tung, A. Y. Hsiao, S. G. Allen, Y. S. Torisawa, M. Ho, and S. Takayama, "High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array," Analyst, vol. 136, no. 3, p. 473-8, 2011. [45] E. Hadjipanayi, V. Mudera, and R. A. Brown, "Guiding cell migration in 3D: A collagen matrix with graded directional stiffness," Cell Motility, vol. 66, no. 3, p. 121-128, 2009. [46] J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, "Cell-laden microengineered gelatin methacrylate hydrogels," Biomaterials, vol. 31, no. 21, p. 5536-5544, 2010. [47] H. Stratesteffen, M. Kopf, F. Kreimendahl, A. Blaeser, S. Jockenhoevel, and H. Fischer, "GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis," Biofabrication, vol. 9, no. 4, p. 045002, 2017. [48] T. R. Cuadros, A. A. Erices, and J. M. Aguilera, "Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture," Journal of the mechanical behavior of biomedical materials, vol. 46, p. 331-342, 2015. [49] G. M. Walker, H. C. Zeringue, and D. J. Beebe, "Microenvironment design considerations for cellular scale studies," Lab Chip, vol. 4, no. 2, p. 91-7, 2004. [50] T. Ahmed, T. S. Shimizu, and R. Stocker, "Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients," Nano Lett, vol. 10, no. 9, p. 3379-85, 2010. [51] C. R. Kothapalli et al., "A high-throughput microfluidic assay to study neurite response to growth factor gradients," Lab Chip, vol. 11, no. 3, p. 497-507, 2011. [52] S. Chung, R. Sudo, P. J. Mack, C. R. Wan, V. Vickerman, and R. D. Kamm, "Cell migration into scaffolds under co-culture conditions in a microfluidic platform," Lab Chip, vol. 9, no. 2, p. 269-75, 2009. [53] W. Saadi, S. W. Rhee, F. Lin, B. Vahidi, B. G. Chung, and N. L. Jeon, "Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber," Biomed Microdevices, vol. 9, no. 5, p. 627-35, 2007. [54] B. Mosadegh, C. Huang, J. W. Park, H. S. Shin, B. G. Chung, S. K. Hwang, K. H. Lee, H. J. Kim, J. Brody, and N. L. Jeon, "Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels," Langmuir : the ACS journal of surfaces and colloids, vol. 23, no. 22, p. 10910-2, 2007. [55] M. S. Kim, T. S. Sim, Y. J. Kim, S. S. Kim, H. Jeong, J. M. Park, H. S. Moon, S. I. Kim, O. Gurel, S. S. Lee, J. G. Lee, and J. C. Parka, "SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter," Lab on a Chip, vol. 12, no. 16, p. 2874-2880, 2012. [56] D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, D. E. Ingber, and G. M. Whitesides, "Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems," Proc Natl Acad Sci U S A, vol. 97, no. 6, p. 2408-13, 2000. [57] M. S. Maria, B. S. Kumar, T. S. Chandra, and A. K. Sen, "Development of a microfluidic device for cell concentration and blood cell-plasma separation," Biomedical Microdevices, journal article vol. 17, no. 6, p. 115, 2015. [58] J. Jung and K.-H. Han, "Lateral-driven continuous magnetophoretic separation of blood cells," Applied Physics Letters, vol. 93, no. 22, p. 223902, 2008. [59] N. Mittal, A. Rosenthal, and J. Voldman, "nDEP microwells for single-cell patterning in physiological media," Lab Chip, vol. 7, no. 9, p. 1146-53, 2007. [60] P. R. Gascoyne and J. Vykoukal, "Particle separation by dielectrophoresis," Electrophoresis, vol. 23, no. 13, p. 1973-83, 2002. [61] P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, no. 7049, p. 370-2, 2005. [62] T. Matsue, N. Matsumoto, and I. Uchida, "Rapid micropatterning of living cells by repulsive dielectrophoretic force," Electrochimica Acta, vol. 42, no. 20–22, p. 3251-3256, 1997. [63] S. Fiedler, S. G. Shirley, T. Schnelle, and G. Fuhr, "Dielectrophoretic sorting of particles and cells in a microsystem," Anal Chem, vol. 70, no. 9, p. 1909-15, 1998. [64] M. Li, W. Li, J. Zhang, G. Alici, and W. Wen, "A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation," Journal of Physics D: Applied Physics, vol. 47, no. 6, p. 063001, 2014. [65] J. Voldman, M. L. Gray, M. Toner, and M. A. Schmidt, "A microfabrication-based dynamic array cytometer," Anal Chem, vol. 74, no. 16, p. 3984-90, 2002. [66] A. Beskok, "AC Electrokinetic Flows," Dordrecht: Springer Netherlands, in Microfluidics Based Microsystems, p. 273-284, 2010. [67] Benjamin, Campbell & Reece, 8th ed. Pearson Benjamin Cummings: Pearson Education, Inc, p. 132, 2008. [68] A. I. Van den Bulcke, B. Bogdanov, N. De Rooze, E. H. Schacht, M. Cornelissen, and H. Berghmans, "Structural and rheological properties of methacrylamide modified gelatin hydrogels," Biomacromolecules, vol. 1, no. 1, p. 31-38, 2000. [69] T. fisher. "Fluorescence SpectraViewer." https://www.thermofisher.com/tw/zt/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html?SID=srch-svtool&UID=481ph9.
|