帳號:guest(3.140.195.249)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪禾蓁
作者(外文):Hong, He-Jhen
論文名稱(中文):結合水凝膠與介電泳細胞排列技術重建體內肝癌微環境晶片應用於細胞遷移之研究
論文名稱(外文):Reconstructing the micro environment of liver cancer tissue by dielectrophoresis and GelMA on chip for cancer invasion testing
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
口試委員(中文):張晃猷
盧向成
口試委員(外文):CHANG, HWAN-YOU
LU, SHIANG-CHENG
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:106033533
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:88
中文關鍵詞:微流體晶片介電泳力排列癌細胞遷移仿生三維組織GelMA
外文關鍵詞:Microfluidic chipBiomimetic 3D tissueDielectrophoresis forceCancer migrationInvasionBiocompatible gelatinGelMA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:45
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著人類生活習慣的改變,不良的作息、過度精緻的飲食習慣等等更是造成身體產生病變的主因,因此人們開始積極地尋找建立體外人體組織之平台,除了能更了解細胞的生長情形,同時可對其進行藥物測試、生長激素刺激等,尋找最佳的治療藥物、觀察不同生長激素之於細胞的影響,替代人體實驗,了解體內組織運作情形。微流體晶片提供了一個適合細胞生長的環境,過去的研究多以二維平面化的細胞培養為基礎來進行生物臨床實驗,然而實際上人體的組織結構是複雜的三維立體結構,在二維細胞上進行測試的結果仍與實際人體內的情況相去甚遠,為了創造更貼近體內環境的仿生平台,研究結合了組織工程和微流體的概念,創造一個三維組織藥物檢測的微系統晶片。
本研究提出以介電泳力排列肝癌細胞與小鼠纖維母細胞,重建體內組織環境,觀察在不同濃度的生長激素下癌細胞之轉移情形,同時也可透過此為流體平台尋找癌細胞加速轉移的誘因。透過生物相容性之光固化水膠材料(gelatin methacrylate,簡稱GelMA)作為細胞支架,並藉由此材料之光固化特性,將細胞固定於以介電泳力排列後之位置,預期在晶片上呈現仿生的肝癌細胞與表皮細胞排列情形。
本實驗以胎牛血清作為癌細胞遷移誘因,血清及培養液經濃度梯度產生器可產生遞減之濃度,流入細胞培養區外的通道,經由擴散機制進入仿生細胞組織,可同時於晶片上觀察不同濃度生長激素下促使癌細胞的遷移距離和數量,作為未來觀察促使癌細胞遷移之誘因之平台,實驗結果顯示,在血清濃度為10%時,細胞於孔盤實驗上隻存活率最高,在培養48小時後,可高於90%;於本研究之晶片上進行的細胞遷移實驗,可以觀察到,在比較血清濃度為0%、5%和10%時,10%濃度下的細胞遷移距離最遠且數目最多,遷移距離約為100µm至200µm。
Irregular lifestyle and excessively refined eating habits lead to body diseases. To study these phenomena and relationships, people look for establishing platforms to either reconstruct or culture in-vitro human tissue, study the interaction between cells, and be applied to drug treatment. Microfluidic chips could provide a suitable microenvironment for cell growth. In the past, most microfluidic cell/tissue/organ chips are based on two-dimensional planar cells cultured for biologically clinical trials such as drug testing. However, human organs and tissues are composed of complex three-dimensional(3D)structure. Thus, the research studies here focus on establishing an in-vitro biomimetic microenvironment taking advantage of 3D-tissue reconstruction and microfluidic culturing and gradients.
In this master study, fibroblast cells with the pumped microfluidics were encapsulated and patterned to form a 3D structure to mimic the vascular wall and structure. The dielectrophoresis force (DEP) and photocrosslinked gelatin methacryloyl (GelMA) hydrogel were used for this 3D construction of fibroblast cells. Then, liver cancer cells were positioned and co-cultured in-between two-side 3D fibroblast cells. The invasion of liver cancer cells in individual culture chamber under different growth factor concentrations was observed and quantitatively studied. Through our liver cancer-cell invasion micro-environment LabChip, the blooding pathway with liver tumor tissue was reconstructed and mimicked in vitro to study the invasion of tumor tissue.
In our experimental results, liver cancer cells have optimal cell viability with the culture medium of 10% FBS. For on-chip culturing of 48 hours, cell viability was still maintained higher than 90%. With the comparison of different FBS concentrations varied from 0% to 10%, the largest migrating distance of liver cancer cells, about 100 µm to 200 µm, was observed for the medium of 10% FBS.
Abstract II
摘要 IV
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1研究背景 1
1.1.1實驗室晶片 2
1.1.2肝臟組織與功能 3
1.1.3肝臟疾病與肝毒性 5
1.1.4 癌細胞轉移 7
1.1.5組織工程 9
1.2研究動機與目的 11
1.3文獻回顧 12
1.3.1組織培養 12
1.3.2濃度梯度產生器 15
1.3.3粒子操控技術 17
1.3.3 細胞遷移 25
第二章 系統理論與晶片設計 26
2.1 設計基礎及理論 26
2.1.1介電泳理論 26
2.1.2擴散理論 30
2.1.3微流體晶片設計理論 32
2.1.4生物支架材料GelMA 35
2.2晶片設計概念 37
2.2.1細胞排列光罩定義法 39
2.2.2濃度梯度產生器模擬 42
2.2.3電極設計及模擬 43
第三章 微流體晶片製程 45
3.1電極基板製作流程 45
3.2晶片製作流程 47
3.2.1微流道母模製程 47
3.2.2微流道晶片製程 49
第四章 實驗材料與方法 51
4.1實驗材料 51
4.1.1細胞培養 51
4.1.2 低導電度溶液 53
4.1.3生物相容性材料水膠GelMA 53
4.1.4細胞螢光染劑 56
4.1.5細胞死活檢測 56
4.1.6 細胞存活率與細胞毒性試驗(Alamar Blue cell viability assay) 57
4.2實驗前置準備 59
4.2.1晶片清洗 59
4.2.2儀器架設 60
4.3實驗操作流程 62
第五章 實驗結果與討論 64
5.1晶片濃度梯度測試結果 64
5.2水膠GelMA曝光測試結果 67
5.3細胞存活率 69
5.3.1 Alamar Blue Assay 69
5.3.2 細胞於GelMA中之存活率 70
5.3.3細胞於不同電壓及操作時間下之存活率 71
5.4細胞排列情形 72
5.4.1晶片二維平拍圖 72
5.4.2共軛聚焦顯微鏡之分層平拍圖 74
5.4.3細胞遷移率測試 75
5.4.5細胞密度 77
第六章 結論與未來展望 78
參考文獻 80

[1] Y. Inokawa, K. Inaoka, F. Sonohara, M. Hayashi, M. Kanda, and S. Nomoto, "Molecular alterations in the carcinogenesis and progression of hepatocellular carcinoma: Tumor factors and background liver factors," Oncology letters, vol. 12, no. 5, p. 3662-3668, 2016.
[2] C. M. Fernández-Rodríguez and M. L. Gutiérrez-García, "Prevention of hepatocellular carcinoma in patients with chronic hepatitis B," World journal of gastrointestinal pharmacology and therapeutics, vol. 5, no. 3, p. 175, 2014.
[3] O. Hamed, E. T. Kimchi, M. Sehmbey, N. J. Gusani, J. T. Kaifi, and K. Staveley-O’Carroll, "Impact of genetic targets on cancer therapy: hepatocellular cancer," Impact of Genetic Targets on Cancer Therapy: Springer, p. 67-90, 2013.
[4] Z. S. Niu, X. J. Niu, and W. H. Wang, "Genetic alterations in hepatocellular carcinoma: An update," World journal of gastroenterology, vol. 22, no. 41, p. 9069, 2016.
[5] G. Baffy, "Hepatocellular carcinoma in non-alcoholic fatty liver disease: epidemiology, pathogenesis, and prevention," Journal of clinical and translational hepatology, vol. 1, no. 2, p. 131, 2013.
[6] C. de Martel, D. Maucort‐Boulch, M. Plummer, and S. Franceschi, "World‐wide relative contribution of hepatitis B and C viruses in hepatocellular carcinoma," Hepatology, vol. 62, no. 4, p. 1190-1200, 2015.
[7] H. Nakayama and T. Takayama, "Management before hepatectomy for hepatocellular carcinoma with cirrhosis," World journal of hepatology, vol. 7, no. 20, p. 2292, 2015.
[8] Q. Yu, X. Yang, W. Duan, C. Li, Y. Luo, and S. Lu, "miRNA‑346 promotes proliferation, migration and invasion in liver cancer," Oncology letters, vol. 14, no. 3, p. 3255-3260, 2017.
[9] V. Srinivasan, V. K. Pamula, and R. B. Fair, "An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids," Lab on a Chip, vol. 4, no. 4, p. 310-315, 2004.
[10] J. Whitesides, M. Hall, R. Anchan, and A. S. LaMantia, "Retinoid signaling distinguishes a subpopulation of olfactory receptor neurons in the developing and adult mouse," J Comp Neurol, vol. 394, no. 4, p. 445-61, 1998.
[11] E. M. Materne, A. G. Tonevitsky, and U. Marx, "Chip-based liver equivalents for toxicity testing-organotypicalness versus cost-efficient high throughput," Lab Chip, vol. 13, no. 18, p. 3481-95, 2013.
[12] S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber and M. Toner, "Isolation of rare circulating tumour cells in cancer patients by microchip technology," Nature, vol. 450, no. 7173, p. 1235-9, 2007.
[13] V. J. Navarro and J. R. Senior, "Drug-related hepatotoxicity," New England Journal of Medicine, vol. 354, no. 7, p. 731-739, 2006.
[14] R. S. O'shea, S. Dasarathy, and A. J. McCullough, "Alcoholic liver disease," Hepatology, vol. 51, no. 1, p. 307-328, 2010.
[15] M. Pirmohamed, S. James, S. Meakin, C. Green, A. K. Scott, T. J. Walley, K. Farrar, B. K. Park, A. M. Breckenridge, "Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients," Bmj, vol. 329, no. 7456, p. 15-19, 2004.
[16] S. Chitturi and G. C. Farrell, "Drug‐induced liver disease," Schiff's diseases of the liver, p. 703-783, 2011.
[17] B. Morgan, A.L. Thomas, J. Drevs, J. Hennig, M. Buchert, A. Jivan, M. A. Horsfield, K. Mross, H. A. Ball, L. Lee, W. Mietlowski, S. Fuxuis, C. Unger, K. O'Byrne, A. Henry, G. R. Cherryman, D. Laurent, M. Dugan, D. Marmé, W. P. Steward, "Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies," Journal of Clinical Oncology, vol. 21, no. 21, p. 3955-3964, 2003.
[18] P. M. van Midwoud, M. T. Merema, E. Verpoorte, and G. M. Groothuis, "A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices," Lab on a Chip, vol. 10, no. 20, p. 2778-2786, 2010.
[19] P. R. O. de Montellano and J. J. De Voss, "Substrate oxidation by cytochrome P450 enzymes," Cytochrome P450: Springer, p. 183-245, 2005.
[20] R. Williams, S. Schalm, and J. O'Grady, "Acute liver failure: redefining the syndromes," The Lancet, vol. 342, no. 8866, p. 273-275, 1993.
[21] g. search.
[22] J. Folkman, "The role of angiogenesis in tumor growth," in Seminars in cancer biology, vol. 3, no. 2, p. 65-71, 1992.
[23] E. C. Woodhouse, R. F. Chuaqui, and L. A. Liotta, "General mechanisms of metastasis," Cancer: Interdisciplinary International Journal of the American Cancer Society, vol. 80, no. S8, p. 1529-1537, 1997.
[24] I. J. Fidler, "Critical determinants of cancer metastasis: rationale for therapy," Cancer chemotherapy and pharmacology, vol. 43, no. 1, p. S3-S10, 1999.
[25] A. F. Chambers, G. N. Naumov, H. J. Varghese, K. V. Nadkarni, I. C. MacDonald, and A. C. Groom, "Critical steps in hematogenous metastasis: an overview," Surgical oncology clinics of North America, vol. 10, no. 2, p. 243-255, 2001.
[26] J. B. Wyckoff, J. G. Jones, J. S. Condeelis, and J. E. Segall, "A critical step in metastasis: in vivo analysis of intravasation at the primary tumor," Cancer research, vol. 60, no. 9, p. 2504-2511, 2000.
[27] A. F. Chambers, A. C. Groom, and I. C. MacDonald, "Metastasis: dissemination and growth of cancer cells in metastatic sites," Nature Reviews Cancer, vol. 2, no. 8, p. 563, 2002.
[28] R. Radinsky, "Modulation of tumor cell gene expression and phenotype by the organspecific metastatic environment," Cancer and Metastasis Reviews, vol. 14, no. 4, p. 323-338, 1995.
[29] I. J. Fidler, "Modulation of the organ microenvironment for treatment of cancer metastasis," JNCI: Journal of the National Cancer Institute, vol. 87, no. 21, p. 1588-1592, 1995.
[30] R. Radinsky, "Molecular mechanisms for organ-specific colon carcinoma metastasis," European Journal of Cancer, vol. 31, no. 7-8, p. 1091-1095, 1995.
[31] R. Radinsky and L. M. Ellis, "Molecular determinants in the biology of liver metastasis," Surgical oncology clinics of North America, vol. 5, no. 2, p. 215-229, 1996.
[32] T. H. Kuo, T. Kubota, M. Watanabe, T.. Furukawa, T Teramoto, K. Ishibiki, M. Kitajima, A. R. Moossa, S. Penman, and R. M. Hoffman, "Liver colonization competence governs colon cancer metastasis," Proceedings of the National Academy of Sciences, vol. 92, no. 26, p. 12085-12089, 1995.
[33] M. Baggiolini, "Chemokines and leukocyte traffic," Nature, vol. 392, no. 6676, p. 565, 1998.
[34] J. J. Campbell and E. C. Butcher, "Chemokines in tissue-specific and microenvironment-specific lymphocyte homing," Current opinion in immunology, vol. 12, no. 3, p. 336-341, 2000.
[35] B. Homey, A. Müller, and A. Zlotnik, "Chemokines: agents for the immunotherapy of cancer?," Nature Reviews Immunology, vol. 2, no. 3, p. 175, 2002.
[36] S. Yang, K. F. Leong, Z. Du, and C. K. Chua, "The design of scaffolds for use in tissue engineering. Part I. Traditional factors," Tissue Eng, vol. 7, no. 6, p. 679-89, 2001.
[37] L. G. Griffith and M. A. Swartz, "Capturing complex 3D tissue physiology in vitro," Nat Rev Mol Cell Biol, vol. 7, no. 3, p. 211-24, 2006.
[38] J. L. Drury and D. J. Mooney, "Hydrogels for tissue engineering: scaffold design variables and applications," Biomaterials, vol. 24, no. 24, p. 4337-4351, 2003.
[39] F. Q. Nie, M. Yamada, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, "On-chip cell migration assay using microfluidic channels," Biomaterials, vol. 28, no. 27, p. 4017-4022, 2007.
[40] B. M. Baker and C. S. Chen, "Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues," J Cell Sci, vol. 125, no. Pt 13, p. 3015-24, 2012.
[41] S. Nemir, H. N. Hayenga, and J. L. West, "PEGDA hydrogels with patterned elasticity: Novel tools for the study of cell response to substrate rigidity," Biotechnol Bioeng, vol. 105, no. 3, p. 636-44, 2010.
[42] F. Shen, Y.  L. Cui, L.  F. Yang, K.  D. Yao, X . H. Dong, W.  Y. Jia, H . D. Shi, "A study on the fabrication of porous chitosan/gelatin network scaffold for tissue engineering," Polymer International, vol. 49, no. 12, p. 1596-1599, 2000.
[43] D. Huh, G. A. Hamilton, and D. E. Ingber, "From 3D cell culture to organs-on-chips," Trends Cell Biol, vol. 21, no. 12, p. 745-54, 2011.
[44] Y. C. Tung, A. Y. Hsiao, S. G. Allen, Y. S. Torisawa, M. Ho, and S. Takayama, "High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array," Analyst, vol. 136, no. 3, p. 473-8, 2011.
[45] E. Hadjipanayi, V. Mudera, and R. A. Brown, "Guiding cell migration in 3D: A collagen matrix with graded directional stiffness," Cell Motility, vol. 66, no. 3, p. 121-128, 2009.
[46] J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, "Cell-laden microengineered gelatin methacrylate hydrogels," Biomaterials, vol. 31, no. 21, p. 5536-5544, 2010.
[47] H. Stratesteffen, M. Kopf, F. Kreimendahl, A. Blaeser, S. Jockenhoevel, and H. Fischer, "GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis," Biofabrication, vol. 9, no. 4, p. 045002, 2017.
[48] T. R. Cuadros, A. A. Erices, and J. M. Aguilera, "Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture," Journal of the mechanical behavior of biomedical materials, vol. 46, p. 331-342, 2015.
[49] G. M. Walker, H. C. Zeringue, and D. J. Beebe, "Microenvironment design considerations for cellular scale studies," Lab Chip, vol. 4, no. 2, p. 91-7, 2004.
[50] T. Ahmed, T. S. Shimizu, and R. Stocker, "Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients," Nano Lett, vol. 10, no. 9, p. 3379-85, 2010.
[51] C. R. Kothapalli et al., "A high-throughput microfluidic assay to study neurite response to growth factor gradients," Lab Chip, vol. 11, no. 3, p. 497-507, 2011.
[52] S. Chung, R. Sudo, P. J. Mack, C. R. Wan, V. Vickerman, and R. D. Kamm, "Cell migration into scaffolds under co-culture conditions in a microfluidic platform," Lab Chip, vol. 9, no. 2, p. 269-75, 2009.
[53] W. Saadi, S. W. Rhee, F. Lin, B. Vahidi, B. G. Chung, and N. L. Jeon, "Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber," Biomed Microdevices, vol. 9, no. 5, p. 627-35, 2007.
[54] B. Mosadegh, C. Huang, J. W. Park, H. S. Shin, B. G. Chung, S. K. Hwang, K. H. Lee, H. J. Kim, J. Brody, and N. L. Jeon, "Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels," Langmuir : the ACS journal of surfaces and colloids, vol. 23, no. 22, p. 10910-2, 2007.
[55] M. S. Kim, T. S. Sim, Y. J. Kim, S. S. Kim, H. Jeong, J. M. Park, H. S. Moon, S. I. Kim, O. Gurel, S. S. Lee, J. G. Lee, and J. C. Parka, "SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter," Lab on a Chip, vol. 12, no. 16, p. 2874-2880, 2012.
[56] D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo, I. S. Choi, D. E. Ingber, and G. M. Whitesides, "Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems," Proc Natl Acad Sci U S A, vol. 97, no. 6, p. 2408-13, 2000.
[57] M. S. Maria, B. S. Kumar, T. S. Chandra, and A. K. Sen, "Development of a microfluidic device for cell concentration and blood cell-plasma separation," Biomedical Microdevices, journal article vol. 17, no. 6, p. 115, 2015.
[58] J. Jung and K.-H. Han, "Lateral-driven continuous magnetophoretic separation of blood cells," Applied Physics Letters, vol. 93, no. 22, p. 223902, 2008.
[59] N. Mittal, A. Rosenthal, and J. Voldman, "nDEP microwells for single-cell patterning in physiological media," Lab Chip, vol. 7, no. 9, p. 1146-53, 2007.
[60] P. R. Gascoyne and J. Vykoukal, "Particle separation by dielectrophoresis," Electrophoresis, vol. 23, no. 13, p. 1973-83, 2002.
[61] P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, no. 7049, p. 370-2, 2005.
[62] T. Matsue, N. Matsumoto, and I. Uchida, "Rapid micropatterning of living cells by repulsive dielectrophoretic force," Electrochimica Acta, vol. 42, no. 20–22, p. 3251-3256, 1997.
[63] S. Fiedler, S. G. Shirley, T. Schnelle, and G. Fuhr, "Dielectrophoretic sorting of particles and cells in a microsystem," Anal Chem, vol. 70, no. 9, p. 1909-15, 1998.
[64] M. Li, W. Li, J. Zhang, G. Alici, and W. Wen, "A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation," Journal of Physics D: Applied Physics, vol. 47, no. 6, p. 063001, 2014.
[65] J. Voldman, M. L. Gray, M. Toner, and M. A. Schmidt, "A microfabrication-based dynamic array cytometer," Anal Chem, vol. 74, no. 16, p. 3984-90, 2002.
[66] A. Beskok, "AC Electrokinetic Flows," Dordrecht: Springer Netherlands, in Microfluidics Based Microsystems, p. 273-284, 2010.
[67] Benjamin, Campbell & Reece, 8th ed. Pearson Benjamin Cummings: Pearson Education, Inc, p. 132, 2008.
[68] A. I. Van den Bulcke, B. Bogdanov, N. De Rooze, E. H. Schacht, M. Cornelissen, and H. Berghmans, "Structural and rheological properties of methacrylamide modified gelatin hydrogels," Biomacromolecules, vol. 1, no. 1, p. 31-38, 2000.
[69] T. fisher. "Fluorescence SpectraViewer." https://www.thermofisher.com/tw/zt/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html?SID=srch-svtool&UID=481ph9.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *