|
[1] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, 39(1) (1981) 201-225. [2] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, Journal of Computational Physics, 100(2) (1992) 335-354. [3] Z. Pan, J.A. Weibel, S.V. Garimella, Spurious current suppression in vof-csf simulation of slug flow through small channels, Numerical Heat Transfer, Part A: Applications, 67(1) (2015) 1-12. [4] R. Gupta, D.F. Fletcher, B.S. Haynes, On the CFD modelling of Taylor flow in microchannels, Chemical Engineering Science, 64(12) (2009) 2941-2950. [5] M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows, Journal of Computational Physics, 162(2) (2000) 301-337. [6] Z. Pan, J.A. Weibel, S.V. Garimella, A cost-effective modeling approach for simulating phase change and flow boiling in microchannels, in: International Electronic Packaging Technical Conference and Exhibition, ASME, 2015, pp. V003T010A023. [7] S.C.K. De Schepper, G.J. Heynderickx, G.B. Marin, Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker, Computers & Chemical Engineering, 33(1) (2009) 122-132. [8] B. Fadhl, L.C. Wrobel, H. Jouhara, CFD modelling of a two-phase closed thermosyphon charged with R134a and R404a, Applied Thermal Engineering, 78 (2015) 482-490. [9] Y. Kim, J. Choi, S. Kim, Y. Zhang, Effects of mass transfer time relaxation parameters on condensation in a thermosyphon, Journal of Mechanical Science and Technology, 29(12) (2015) 5497-5505. [10] A. Alizadehdakhel, M. Rahimi, A.A. Alsairafi, CFD modeling of flow and heat transfer in a thermosyphon, International Communications in Heat and Mass Transfer, 37(3) (2010) 312-318. [11] M. Knudsen, The Kinetic Theory of Gases: Some Modern Aspects (Methuen & Co. Ltd., London), (1934). [12] W.H. Lee, A Pressure Iteration Scheme for Two-Phase Modeling, Technical Report LA-UR 79-975, (1979). [13] R.W. Schrage, A Theoretical Study of Interface Mass Transfer, Columbia University Press, New York, 1953. [14] I. Tanasawa, Advances in Condensation Heat Transfer, in: J.P. Hartnett, T.F. Irvine, Y.I. Cho (Eds.) Advances in Heat Transfer, Elsevier, 1991, pp. 55-139. [15] C.R. Kharangate, I. Mudawar, Review of computational studies on boiling and condensation, International Journal of Heat and Mass Transfer, 108 (2017) 1164-1196. [16] F. Gibou, L. Chen, D. Nguyen, S. Banerjee, A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change, Journal of Computational Physics, 222(2) (2007) 536-555. [17] S. Shin, D. Juric, Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity, Journal of Computational Physics, 180(2) (2002) 427-470. [18] B.A. Nichita, J.R. Thome, A level set method and a heat transfer model implemented into FLUENT for modeling of microscale two phase flows, in: AVT-178 Specialists' Meeting on System Level Thermal Management for Enhanced Platform Efficiency, 2010. [19] D.-L. Sun, J.-L. Xu, L. Wang, Development of a vapor–liquid phase change model for volume-of-fluid method in FLUENT, International Communications in Heat and Mass Transfer, 39(8) (2012) 1101-1106. [20] D. Sun, J. Xu, Q. Chen, Modeling of the evaporation and condensation phase-change problems with FLUENT, Numerical Heat Transfer, Part B: Fundamentals, 66(4) (2014) 326-342. [21] I. Perez-Raya, S.G. Kandlikar, Numerical modeling of interfacial heat and mass transport phenomena during a phase change using ANSYS-Fluent, Numerical Heat Transfer, Part B: Fundamentals, 70(4) (2016) 322-339. [22] Z. Pan, J.A. Weibel, S.V. Garimella, A saturated-interface-volume phase change model for simulating flow boiling, International Journal of Heat and Mass Transfer, 93 (2016) 945-956. [23] W. Nusselt, Die oberflachen kondenastion des wasserdamfes, Z. Vereines Dtsch. Ingenieure 60 ((1916) 541–546. 569–575.). [24] W.M. Rohsenow, Effect of vapor velocity on laminar and turbulent film condensation, Transactions of ASME November, (1956) 1645-1648. [25] E.M. Sparrow, J.L. Gregg, A boundary-layer treatment of laminar-film condensation, Journal of Heat Transfer, 81(1) (1959) 13-18. [26] J.C.Y. Koh, E.M. Sparrow, J.P. Hartnett, The two phase boundary layer in laminar film condensation, International Journal of Heat and Mass Transfer, 2(1) (1961) 69-82. [27] V.P. Carey, Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment, Washington (D.C.): Hemisphere, 1992. [28] A.S. Dalkilic, S. Yildiz, S. Wongwises, Experimental investigation of convective heat transfer coefficient during downward laminar flow condensation of R134a in a vertical smooth tube, International Journal of Heat and Mass Transfer, 52(1) (2009) 142-150. [29] R.I. Hirshburg, L.W. Florschuetz, Laminar wavy-film flow: Part I, hydrodynamic analysis, Journal of Heat Transfer, 104(3) (1982) 452-458. [30] H. Brauer, Stromung and warmeubergang bei rieselfilmen, VDI Forschungself, 457 (1956) B22. [31] R.P. Salazar, E. Marschall, Three-dimensional surface characteristics of a falling liquid film, International Journal of Multiphase Flow, 4(5) (1978) 487-496. [32] S.L. Chen, F.M. Gerner, C.L. Tien, General film condensation correlations, Experimental Heat Transfer, 1(2) (1987) 93-107. [33] P. Kapitza, S. Kapitza, Wave flow of thin layers of a viscous fluid Zh, Teor. Fiz, 19 (1949) 105-120. [34] T. Nosoko, P.N. Yoshimura, T. Nagata, K. Oyakawa, Characteristics of two-dimensional waves on a falling liquid film, Chemical Engineering Science, 51(5) (1996) 725-732. [35] J. Liu, J.P. Gollub, Solitary wave dynamics of film flows, Physics of Fluids, 6(5) (1994) 1702-1712. [36] S. Alekseenko, V.Y. Nakoryakov, B. Pokusaev, Wave formation on a vertical falling liquid film, AIChE Journal, 31(9) (1985) 1446-1460. [37] D. Gao, N. Morley, V. Dhir, Numerical simulation of wavy falling film flow using VOF method, Journal of computational physics, 192(2) (2003) 624-642. [38] S. Bo, X. Ma, Z. Lan, H. Chen, J. Chen, Numerical simulation on wave behaviour and flow dynamics of laminar‐wavy falling films: effect of surface tension and viscosity, The Canadian Journal of Chemical Engineering, 90(1) (2012) 61-68. [39] F.W. Pierson, S. Whitaker, Some theoretical and experimental observations of the wave structure of falling liquid films, Industrial & Engineering Chemistry Fundamentals, 16(4) (1977) 401-408. [40] R. Hirshburg, L. Florschuetz, Laminar wavy-film flow: Part I, hydrodynamic analysis, (1982). [41] Z. Liu, B. Sunden, J. Yuan, VOF modeling and analysis of filmwise condensation between vertical parallel plates, 43(1) (2012) 47-68. [42] Q. Liu, J. Yang, W. Qian, H. Gu, M. Liu, Numerical study of the forced convective condensation on a short vertical plate, Heat Transfer Engineering, 38(1) (2017) 103-121. [43] J.-B. Dupont, D. Legendre, Numerical simulation of static and sliding drop with contact angle hysteresis, Journal of Computational Physics, 229(7) (2010) 2453-2478. [44] M.M. Francois, S.J. Cummins, E.D. Dendy, D.B. Kothe, J.M. Sicilian, M.W. Williams, A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, Journal of Computational Physics, 213(1) (2006) 141-173. [45] Y. Renardy, M. Renardy, PROST: A parabolic reconstruction of surface tension for the volume-of-fluid method, Journal of Computational Physics, 183(2) (2002) 400-421. [46] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging and fragmentation in multiphase flows with SURFER, Journal of Computational Physics, 113(1) (1994) 134-147. [47] T. Abadie, J. Aubin, D. Legendre, C. Xuereb, Hydrodynamics of gas–liquid Taylor flow in rectangular microchannels, Microfluidics and Nanofluidics, 12(1) (2012) 355-369. [48] S. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, 2018. [49] Y. Zhang, A. Faghri, M.B. Shafii, Capillary blocking in forced convective condensation in horizontal miniature channels, J. Heat Transfer, 123(3) (2001) 501-511. [50] R. Peyret, Handbook of Computational Fluid Mechanics, Elsevier, 1996. [51] R.I. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting, Journal of Computational Physics, 62(1) (1986) 40-65.
|