帳號:guest(18.222.9.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林子琁
作者(外文):Lin, Tzu-Hsuan
論文名稱(中文):商用Ni觸媒之CO2甲烷化反應器性能數值模擬
論文名稱(外文):Numerical simulation of CO2 methanation reactor performance with commercial Ni catalyst
指導教授(中文):許文震
指導教授(外文):Sheu, Wen-Jenn
口試委員(中文):陳炎洲
林錫慶
余慶聰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:106033513
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:36
中文關鍵詞:CO2甲烷化鎳觸媒固定床管狀反應器
外文關鍵詞:CO2 methanationNi-based catalystaxisymmetric fixed-bed tubular reactor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:213
  • 評分評分:*****
  • 下載下載:18
  • 收藏收藏:0
研究CO2甲烷化反應之文獻不勝枚舉,本研究利用COMSOL軟體進行數值模擬,探討CO2甲烷化反應之情況,並使用商用鎳觸媒(66 wt% Ni/Al2O3)作為催化劑,於反應溫度200-500℃、等溫固定床管狀反應器中進行反應,分析不同入口流量10000-30000 ml g-1 h-1對反應性能之影響,發現流量越大,流速會越快,使反應越不完全,因此其CO2轉化率、CH4產率與CH4選擇性會隨著流量變大而變小,其中在300℃時CO2轉化率與CH4產率最少會下降大約8%,而CH4選擇性下降之幅度較小;接著探討在入口氣體加入0.5%、1%與1.5%之CO對CO2甲烷化反應造成的變化,發現加入CO會使產生之CH4減少,導致CH4產率與CH4選擇性下降,其中在300℃與流量10000 ml g-1 h-1之情況下,CH4產率最少會下降大約24%、CH4選擇性最少會下降大約27%,其CO2轉化率最少也會下降大約27%;而溫度為CO2甲烷化反應極為重要之因子,因溫度越高反應會越劇烈與完全,隨著溫度由200℃上升至300-350℃,其CO2轉化率、CH4產率與CH4選擇性會跟著上升至一臨界值隨後再下降,因此CO2甲烷化反應之最適反應溫度介於300-350℃之間。
There are numerous researches investigate CO2 methanation reaction. The purpose of this research is to investigate the performances of CO2 methanation reaction by numerical simulation of COMSOL software. Because Ni-based catalyst is the most prevailing catalyst, we used commercial Ni metal (66wt% Ni/SiO2-Al2O3) as the catalyst.
A fixed-bed tubular reactor is used as the physical model and axisymmetric isothermal governing for the gas flow, energy transfer and species transport are solved numerically. The reactant temperature is an important parameter for CO2 methanation reaction, which is carried out at 200-500°C in the research. The effect of different inlet flow rates and the presence of CO in feed gas were discussed in this research. The result showed that CO2 conversion、CH4 yield and CH4 selectivity would have better performances when the flow rate decreased. At 300 ° C, CO2 conversion and CH4 yield will decrease at least 8%, and CH4 selectivity will decrease less. An optimum temperature was determined at which the CO2 conversion had a maximum value. The CO2 conversion、CH4 yield and CH4 selectivity would increase to maximum values when the temperature increased. The presence of CO in the feed gas caused CO2 conversion、CH4 yield and CH4 selectivity decreased. At 300 ° C and flow rate of 10000 ml g-1 h-1, the CH4 yield will decrease at least 24%, the CH4 selectivity will decrease at least 27%, and the CO2 conversion will decrease at least 27%.
摘要 i
ABSTRACT ii
目 錄 iii
表目錄 v
圖目錄 vi
第1章 緒論 1
第2章 反應器 5
第3章 數學模型與數值方法 8
3-1模擬軟體介紹 8
3-2基本假設 8
3-3統御方程式 8
3.3.1質量守恆方程式 9
3.3.2動量方程式 9
3.3.3能量方程式 10
3.3.4物質方程式 10
3-4化學反應 11
3-5邊界條件 13
3.5.1反應器入口 13
3.5.2反應器出口 13
3.5.3氣體與反應器內壁之介面 13
3-6數值方法 13
第4章 結果與討論 15
4.1反應動力式驗證 15
4.2流量變化之影響 17
4.3溫度之影響 20
4.4入口加入CO之影響 24
第5章 結論 28
5.1結論 28
5.2未來建議 30
參考文獻 31
附錄 35
[1] R.K. Pachauri, A. Reisinger. Climate Change 2007: Synthesis Report, IPCC, Geneva, Switzerland (2007).
[2] Huaman, Ruth Nataly Echevarria, and Tian Xiu Jun. "Energy related CO2 emissions and the progress on CCS projects: a review." Renewable and Sustainable Energy Reviews 31 (2014) 368-385.
[3] Spigarelli, Brett P., and S. Komar Kawatra. "Opportunities and challenges in carbon dioxide capture." Journal of CO2 Utilization 1 (2013) 69-87.
[4] Hashimoto, K., et al. "Advanced materials for global carbon dioxide recycling." Materials Science and Engineering: A 304 (2001) 88-96.
[5] 林立夫, 2015, 〈氫能與燃料電池論壇〉,《第10屆全國氫能與燃料電池學術研討會, 國立中央大學》
[6] Sabatier, P., and J. B. Senderens. "Comptes Rendus Des Seances De L’Academie Des Sciences Section VI—Chimie." Imprimerie Gauthier-Villars: Paris, France (1902).
[7] Hwang, Hyun Tae. A study of the application of membrane-based reactive separations to the carbon dioxide methanation. University of Southern California, (2009).
[8] Vannice, M. A. "The catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen." Catalysis Reviews—Science and Engineering 14.1 (1976) 153-191.
[9] Mills, G. Alex, and Fred W. Steffgen. "Catalytic methanation." Catalysis Reviews 8.1 (1974) 159-210.
[10] Kopyscinski, Jan. "Production of synthetic natural gas in a fluidized bed reactor." Disseration ETH Zurich (2010).
[11] Xu, Jianguo, and Gilbert F. Froment. "Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics." AIChE journal 35.1 (1989) 88-96.
[12] Rönsch, Stefan, et al. "Review on methanation–from fundamentals to current projects." Fuel 166 (2016) 276-296.
[13] Gao, Jiajian, et al. "A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas." RSC Advances 2.6 (2012) 2358-2368.
[14] Swapnesh, Anang, Vimal C. Srivastava, and Indra D. Mall. "Comparative study on thermodynamic analysis of CO2 utilization reactions." Chemical Engineering And Technology 37.10 (2014) 1765-1777.
[15] Chein, Rei-Yu, Ching-Tsung Yu, and Chi-Chang Wang. "Numerical simulation on the effect of operating conditions and syngas compositions for synthetic natural gas production via methanation reaction." Fuel 185 (2016) 394-409.
[16] Su, Xiong, et al. "Catalytic carbon dioxide hydrogenation to methane: A review of recent studies." Journal of Energy Chemistry 25.4 (2016) 553-565.
[17] Marwood, Michel, Ralf Doepper, and Albert Renken. "In-situ surface and gas phase analysis for kinetic studies under transient conditions The catalytic hydrogenation of CO2." Applied Catalysis A: General 151.1 (1997) 223-246.
[18] Panagiotopoulou, Paraskevi, Dimitris I. Kondarides, and Xenophon E. Verykios. "Mechanistic study of the selective methanation of CO over Ru/TiO2 catalyst: identification of active surface species and reaction pathways." The Journal of Physical Chemistry C 115.4 (2010) 1220-1230.
[19] Panagiotopoulou, Paraskevi, Dimitris I. Kondarides, and Xenophon E. Verykios. "Mechanistic aspects of the selective methanation of CO over Ru/TiO2 catalyst." Catalysis Today 181.1 (2012) 138-147.
[20] Schild, Christoph, et al. "Carbon dioxide hydrogenation over nickel/zirconia catalysts from amorphous precursors: On the mechanism of methane formation." The Journal of Physical Chemistry 95.16 (1991) 6341-6346.
[21] Fisher, Ian A., and Alexis T. Bell. "A Comparative Study of CO and CO2 Hydrogenation over Rh/SiO2." Journal of catalysis 162.1 (1996) 54-65.
[22] Eckle, Stephan, Hans-Georg Anfang, and R. Jürgen Behm. "Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases." The Journal of Physical Chemistry C 115.4 (2010) 1361-1367.
[23] Beuls, Antoine, et al. "Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst." Applied Catalysis B: Environmental 113 (2012) 2-10.
[24] Jacquemin, Marc, Antoine Beuls, and Patricio Ruiz. "Catalytic production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism." Catalysis Today 157.1-4 (2010) 462-466.
[25] Kopyscinski, Jan, Tilman J. Schildhauer, and Serge MA Biollaz. "Production of synthetic natural gas (SNG) from coal and dry biomass–A technology review from 1950 to 2009." Fuel 89.8 (2010) 1763-1783.
[26] 劉德治,商用觸媒對二氧化碳甲烷固定床反應器之性能研究,碩士論文,國立聯合大學,苗栗,2019
[27] M. Phanikumar, R. Mahajan, Non-Darcy natural convection in high porosity metal Foams. Int. J. Heat Mass Transfer 45 (2002) 3781-3793.
[28] C.Borgnakke and R. Sonntag, Fundamentals of Thermodynamics, 7 ed., Wiley & Sons (2009).
[29] R. Bird, W. Stewart and E. Lightfoot, Transport Phenomena, Wiley & Sons (2002).

[30] Razzaq, Rauf, et al. "A highly active and stable Co4N/γ-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG)." Chemical Engineering Journal 262 (2015) 1090-1098.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *