帳號:guest(3.145.178.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林方婷
作者(外文):Lin, Fang-Ting
論文名稱(中文):應用圖形處理器叢集與晶格波茲曼法模擬二相流問題
論文名稱(外文):Lattice Boltzmann simulation of two-phase flow on multi-GPU cluster
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):黃楓南
廖川傑
口試委員(外文):Hwang, Feng-Nan
Liao, Chuan-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:106033509
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:41
中文關鍵詞:晶格波茲曼法Allen-Cahn模型旋節分解圖形顯示卡
外文關鍵詞:LatticeBoltzmannmethodAllen-CahnequationSpinodal decompositionGPU
相關次數:
  • 推薦推薦:0
  • 點閱點閱:404
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
本研究以D3Q19晶格波茲曼法模擬二相流問題,主要比較兩種介面捕捉公式(Cahn-Hilliard equation 與 Allen-Cahn equation)之差異。以靜止液珠的測試為例,兩種介面捕捉公式造成的假性速度相差不大,但Cahn-Hilliard模型模擬的結果會出現氣液組成率超出上限(純液體)的情形,進而導致液珠收縮的現象;單顆液珠震盪與兩顆液珠融合的測試結果顯示兩種介面捕捉公式的模擬結果與解析解一致。不過Allen-Cahn模型無法模擬旋節分解(Spinodal decomposition),只能用Cahn-Hilliard模型表現隨機生成的氣液組成率到最後發展分離成氣液雙相。本研究利用圖形顯示卡叢集搭配一維切割進行平行運算,並使用多個stream將邊界點的傳值時間隱藏在內部點的計算時間中進行加速計算。
This thesis presents the simulation of the three-dimensional two-phase lattice Boltzmann model on the graphics processing unit (GPU) cluster. In this thesis, the objective is to develop a program according to Lee's model with the Allen-Cahn equation, then comparing the results to Lee's model with the Cahn-Hilliard equation. Take one stationary drop as an example, the difference of the generated spurious velocity between these two interface capturing equations are not much different. However, the drop shrinkage phenomenon only occurs in the result of the Cahn-Hilliard model. The numerical results of the Allen-Cahn model both in single drop oscillation and two drops merging are identical to the theoretical solution. However, the Allen-Cahn model is unable to simulate the spinodal decomposition phenomenon, so the phase decomposition from the initial random liquid-vapor composition only can be shown in the result of the Cahn-Hilliard model. This thesis uses one-dimensional decomposition to implement parallel programming and uses the overlapping strategy which hiding the boundary exchange time in the computing time to improve computational efficiency.
1 Introduction. . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Motivation and research backgrounds . . . . . . . . . . . . 1
1.1.2 Lattice Boltzmann method . . . . . . . . . . . . . . . . . . 2
1.1.3 Graphics processing unit . . . . . . . . . . . . . . . . . . 3
1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Lattice Boltzmann two-phase model . . . . . . . . . . . . . . 3
1.2.2 GPU implementation . . . . . . . . . . . . . . . . . . . . . 5
1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Discrete Boltzmann equation with the external force . . . . . . 8
2.3 DBE for the pressure evolution and the momentum equations . . . 9
2.4 DBE for the phase-field models . . . . . . . . . . . . . . . . . 12
2.4.1 Cahn-Hilliard model . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Allen-Cahn model . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Gradient treatments . . . . . . . . . . . . . . . . . . . . . . 15

3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Simulation procedure . . . . . . . . . . . . . . . . . . . . . 16
3.2 Periodic boundary condition . . . . . . . . . . . . . . . . . . 17
3.3 GPU implementation . . . . . . . . . . . . . . . . . . . . . . 18

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Stationary drop . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1 Spurious velocity . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Drop shrinkage phenomenon . . . . . . . . . . . . . . . . . . 24
4.2 Zalesak’s disk . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Single Drop oscillation . . . . . . . . . . . . . . . . . . . . 29
4.4 Two drops merging . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Spinodal decomposition . . . . . . . . . . . . . . . . . . . . 33

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1. T. Y. Hou, J. S. Lowengrub and M. J. Shelley, ``Boundary integral methods for multicomponent fluids and multiphase materials," J. Comput. Phys.169, 302-362, (2001).
2. S. Osher and R. P. Fedkiw, ``Level set method: An overview and some recent results," J. Comput. Phys. 169, 463-502, (2001).
3. R. Scardovelli and S. Zaleski, ``Direct numerical simulation of free-surface and interfacial flow," Annu. Rev. Fluid Mech. 31, 567-603, (1999).
4. U. Frisch, B. Hasslacher and Y. Pomeau, ``Lattice-gas automata for the Navier-Stokes equation," Phys. Rev. Lett. 56, 1505-1508, (1986).
5. S. Wolfram, ``Cellular automaton fluids 1: Basic theory," J. Stat. Phys. 45, 471-526, (1986).
6. P. L. Bhatnagar, E. P. Gross and M. Grook, ``A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems," Phys. Rev. E 94, 511-525, (1954).
7. S. Harris, ``An introduction to the theory of the Boltzmann equation," Holt, Rinehart and Winston, New York, (1971).
8. F. J. Higuera, S. Sussi and R. Benzi, ``Three-dimensional flows in complex geometries with the lattice Boltzmann method," Europhys. Lett. 10, 433-438, (1989).
9. F. J. Higuera and J. Jem\'{e}nez, ``Boltzmann approach to lattice gas simulations," Europhys. Lett. 9, 663-668, (1989).
10. U. Frisch, D. d'Humi\`{e}res, B. Hasslacher, P. Lallemand, Y. Pomeau and J. P. Rivet, ``Lattice gas hydrodynamics in two and three dimensions," Complex Syst. 1, 649-707, (1987).
11. D. O. Martinez, W. H. Matthaeus, S. Chen and D. C. Montgomery, ``Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics,"
Phys. Fluids 6, 1285-1298, (1994).
12. P. Y. Hong, L. M. Huang, L. S. Lin, and C.A. Lin, ``Scalable multi-relaxation-time lattice Boltzmann simulations on multi-GPU cluster," Comp. Fluids 110, 1-8, (2015).
13. H. Liang, B. C. Shi, Z.L. Guo and Z. H. Chai, ``Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows," Phys.Rev. E 89, 053320, (2014).
14. H. Ding, P. D. M. Spelt and C. Shu,``Diffuse interface model for incompressible two-phase flows with large density ratios," J. Comput. Phys. 226, 2078-2095, (2007).
15. Y. Q. Zu and S. He,``Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts," Phys. Rev. E 87, 043301, (2013).
16. J. W. Cahn and J. E. Hilliard, ``Free energy of a nonuniform system. i. interfacial free energy," J. Comput. Phys. 28, 258-267, (1958).
17. S. M. Allen and J. W. Cahn, ``Mechanisms of phase transformations within the miscibility gap of Fe-Rich Fe-Al alloys," Acta Metall. 24, 425-437, (1976).
18. L. Zheng, T. Lee, Z. Guo and D. Rumschitzki, ``Shrinkage of bubbles and drops in the lattice Boltzmann equation method for nonideal gases," Phys. Rev. E 89, 033302, (2014).
19. Y. Sun and C. Beckermann, ``Sharp interface tracking using the phase-field equation," J. Comput. Phys. 220, 626-653, (2007).
20. P. H. Chiu and Y. T. Lin, ``A conservative phase field method for solving incompressible two-phase flows," J. Comput. Phys. 230, 185-204, (2011).
21. D. H. Rothman and J. M. Keller, ``Immiscible cellular-automaton fluids," J. Stat. Phys. 52(3), 1119-1127, (1988).
22. A. K. Gunstensen and D. H. Rothman, ``Lattice Boltzmann model of immiscible fluids," Phys. Rev. A 43, 4320-4327, (1991).
23. D. Grunau, S. Y. Chen and K. Eggert, ``A lattice Boltzmann model for multiphase fluid flows," Phys. Fluids A 5, 2557-2562, (1993).
24. X. Shan and H. Chen, ``Lattice Boltzmann model for simulating flows with multiple phases and components," Phys. Rev. E 47, 1815-1819, (1993).
25. X. Shan and H. Chen, ``Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation," Phys. Rev. E 49, 2941-2948, (1994).
26. X. Shan and G. D. Doolen, ``Multicomponent lattice-Boltzmann model with interparticle interaction," J. Stat. Phys. 52, 379-393, (1995).
27. X. He, X. Shan and G.D. Doolen, ``Discrete Boltzmann equation model for nonideal gases," Phys. Rev. 57, R13-R16, (1998).
28. X. He, S. Chen and R. Zhang, `` A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability," J. Comput. Phys. 152, 642-663, (1999).
29. P. Yuan and L. Schaefer, ``Equations of state in a lattice Boltzmann model," Phys. Fluids18, 042101, (2006).
30. T. Lee, ``Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids," Comput. Math. Appl. 58, 987-994, (2009).
31. T. Lee and P. F. Fischer, ``Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases," Phys. Rev. E 74, 046709, (2006).
32. T. Lee, and C. L. Lin, ``A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio," J. Comput. Phys. 206, 16-47, (2005).
33. T. Lee, and C. L. Lin, ``Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces," J. Comput. Phys. 229, 8045-8063, (2010).
34. J. Bolz, I. Farmer, E. Grinspun, and P. Schr\"{o}der, ``Sparse matrix solvers on the GPU: Conjugate gradients and multigrid,'' ACM Trans. Graph. 22, 917-924, (2003).
35. F. A. Kuo, M. R. Smith, C. W. Hsieh, C. Y. Chou, and J. S. Wu, ``GPU acceleration for general conservation equations and its application to several engineering problems,'' Comput. Fluids 45, 147-154, (2011).
36. J. Tolke, ``Implementation of a lattice Boltzmann kernel using the compute unified device architecture developed by nVIDIA,'' Comput. Visual Sci.13, 29-39, (2008).
37. J. Tolke and M. Krafczyk, ``TeraFLOP computing on a desktop PC with GPUs for 3D CFD,'' Int. J. Comput. Fluid D. 22, 443-456, (2008).
38. C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, ``A new approach to the lattice Boltzmann method for graphics processing units,'' Comput. Math. Appl. 61, 3628-3638, (2011).
39. X. Wang and T. Aoki, ``Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster,'' Parallel. Computing 37, 521-535, (2011).
40. A. Fakhari, M. Geier, and T. Lee, ``A mass-conserving lattice Boltzmann method with dynamic grid refinement for immisicible two-phase flows," J. Comput. Phys. 315, 434-457, (2016).
41. D. Jamet, O. Lebaigue, N. Coutris and J. M. Delhaye, ``The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change," J. Comput. Phys.169, 624-651, (2001).
42. J. S. Rowlinson and B. Widom, ``Molecular theory of capillarity, Clarendon," Oxford, (1989).
43. V. M. Kendon, M. E. Cates, I. Pagonabarraga, J.C. Desplat and P. Bladon, ``Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study," J. Fluid Mech. 440, 147-203, (2001).
44. H. W. Chang, P .Y. Hong, L. S. Lin and C. A. Lin, ``Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units," Comput. Fluids 88, 866-871, (2013).
45. J. Myre, S. D. C. Walsh, D. Lilja and M. O. Saar, ``Performance analysis of single-phase, multiphase, and multicomponent lattice-Boltzmann fluid flow simulations on GPU clusters," Concurrency Comput.: Pract. and Exper. 23, 332-350, (2010).
46. T. C. Huang, ``Lattice Boltzmann simulations of two-phase flow at high density ratio on multi-GPU cluster," National Tsing Hua University, Department of Power Mechanical Engineering, (2016).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *