帳號:guest(3.145.188.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張哲維
作者(外文):Chang, Che-Wei
論文名稱(中文):交錯層狀磁致冷再生器之數值分析
論文名稱(外文):Numerical Analysis of Active Magnetic Regenerators with Staggered Laminated Plates
指導教授(中文):許文震
指導教授(外文):Sheu, Wen-Jenn
口試委員(中文):陳炎洲
李隆正
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:106033506
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:143
中文關鍵詞:磁致冷卻磁熱材料磁致冷再生器
外文關鍵詞:Magnetic refrigerationMagnetocaloric material (MCM)Active magnetic regenerator (AMR)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:83
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
磁致冷卻利用磁熱材料的磁熱效應,取代傳統冷媒壓縮與膨脹過程,降低冷卻系統的成本,且無冷媒使用。以熱流觀點而言,磁致冷再生器存在兩個技術關鍵:(1)固態磁熱材料與流體間熱傳過程中的熱傳效率不佳,操作頻率無法增大;(2)冷熱端軸向之熱傳損失,熱量會經由熱傳導方式由熱端傳向冷端,降低磁致冷再生器的性能。
不同於以往之平板設計,本研究將磁熱材料平板交錯置於冷卻系統中,奇數與偶數層斷點位置交錯。對相近的磁熱材料段而言,水平間中斷,相鄰兩層間差排。如此能增加熱端與冷端間磁熱材料熱傳導之熱阻,並增加徑向流,打破工作流體之邊界層,加強熱傳,以提升其操作頻率,進而增加磁致冷系統效能。
本研究藉由商業軟體數值模擬,建立8種長為80 mm 之二維模型,分析新結構之磁致冷系統在不同操作狀態的表現。於磁場變化0-1特斯拉、冷熱端溫度283 - 303 K、循環週期0.6秒、利用因數0.4時, “4 right holes, 0.5 mm”較原模型減少磁熱材料使用2.5%與壓降減少4%,且製冷功率由62.48升至69.10瓦,散熱需求功率由129.13降至113.42瓦。本研究證實,透過交錯層狀磁致冷再生器之設計,能增加磁致冷裝置之效能。並透過溫度場分析,推論近熱端處仍可局部減少磁熱材料的使用。
Magnetic refrigeration system, which functions without refrigerant consumption and compressor employment, is an ecofriendly novel refrigeration technology.
However, two heat transfer problems restrict the efficiency of active magnetic regenerator (AMR). (a) Operation frequency could not be enhanced due to deficient heat flux between magnetocaloric material (MCM) and working fluid. (b) The heat conduction from hot side to cold one hinders the refrigeration capacity.
The novel design which could increase the thermal resistance between the room temperature side and chilling temperature one and enhance the heat flux between two phases, was made. For a rectangular AMR plate, several rectangular staggered breaking points were employed instead of complete laminated plates. Breaking points of layers restricted the heat conduction effect from hot side to cold one. Furthermore, they brought secondary flow which broke boundary layers, and enhanced the heat convection effect.
The commercial software was employed and 8 two-dimensional models with a length of 80 mm were created to analyze the performance of new AMRs at different operating parameters.
Compared to the original model, "4 right holes, 0.5 mm" model reduces the usage of MCM by 2.5%, decreases the pressure drop of 4%, increases the cooling power from 62.48 to 69.10 watts, and reduces the heating power from 129.13 to 113.42 watts at the magnetic field changes of 0-1 Tesla, the temperature of the hot to cold ends of 283 - 303 K, the operation period of 0.6 seconds, and the utilization factor of about 0.4.
This study shows that the performance of magnetic refrigeration devices can be intensified by active magnetic regenerators (AMRs) with staggered laminated plates, and it is inferred by temperature distribution that the MCM usage could be decreased locally.
摘要 i
Abstract ii
致謝 iv
List of Illustrations vii
List of Tables xiv
Nomenclature xv
Chapter 1. Introduction 1
1.1. Introduction 1
1.2. Background 2
Chapter 2. Theories and Literature Review 5
2.1. Magnetocaloric Effect (MCE) 5
2.1.1. Thermodynamic theory 5
2.1.2. Curie temperature (TCurie), First and Second Order Phase Transition 9
2.2. Magnetocaloric Material (MCM) 11
2.2.1. Gadolinium (釓, Gd) and Related Alloys 11
2.2.2. Manganese (錳, Mn) and Related Alloys 13
2.2.3. LaFe13-xSix and Related Alloys 16
2.2.4. Some of Other MCE Materials 17
2.3. Requirements and Some Designs of Magnetic Field Mechanisms 19
2.3.1. C-shaped Magnets 20
2.3.2. Halbach Array 21
2.4. AMR and AMRR 23
2.4.1. Active Magnetic Regenerator (AMR) 24
2.4.2. Active Magnetic Regenerator Refrigeration Cycle (AMRR Cycle) 25
2.5. Literature Review 26
2.5.1. AMR Apparatuses 26
2.5.2. Numerical Models of AMR System 42
Chapter 3. Numerical Methods 48
3.1. Problem Descriptions and Assumptions 48
3.1.1. Problem Descriptions and Proposed Solution 48
3.1.2. Physical Models of Numerical Model A, B, and C. 50
3.1.3. Assumptions 51
3.2. Modeling of AMR Cycles 52
3.2.1. Dimensions of Simulation Models 52
3.2.2. Time-Dependent Velocity and Magnetic Field 56
3.2.3. Governing Equations 59
3.2.4. Boundary and Initial Conditions 59
3.2.5. Material properties and Mean Field Theory (MFT) 65
3.2.6. Heat Convection Coefficient 71
3.3. Derived Values 72
3.3.1. Convergence Criteria 72
3.3.2. Performance Evaluation of AMR 73
3.4. Software Package Settings 74
3.4.1. Global Definitions (全域定義) 74
3.4.2. Component (元件) 74
3.4.3. Time-Dependent Simulation Solver 78
3.4.4. Relative Temperature Differences 79
3.4.5. Cooling/Heating Power 79
Chapter 4. Results and Discussion 80
4.1. Periodical Steady State 80
4.2. Verification and Differences between 1-D and 2-D Model A. 81
4.3. Cooling/Heating Power of Model B and C 88
4.3.1. Grid Independent Test 88
4.3.2. Cooling/Heating Power of Model B (Complete MCM Plates) 90
4.3.3. Cooling/Heating Power of Model C (Proposed Solution) 91
4.3.4. Specific Cooling/Heating Power of Model B and C 97
4.4. Comparison of Cooling/Heating Power between Potential Models 102
4.5. Qh-Qc and Qc/ (Qh-Qc) 108
4.6. Comparison of T(x) between Potential Models 115
4.7. Pressure Drops between Two Ends of AMRs 125
4.8. Flow Distribution with Staggered Breaking Points 127
4.9. Effect and Entrance Length with Staggered Breaking Points 130
4.9.1. Quick Test of Length of Breaking Points under Steady State 130
4.9.2. Flow Distribution Test under Transient State 132
Chapter 5. Conclusion and Prospect 135
5.1. Conclusion 135
5.2. Prospect 138
Reference 139 
[1] Russek, Steven L., and Carl B. Zimm. "Potential for cost effective magnetocaloric air conditioning systems." International Journal of Refrigeration 29.8 (2006): 1366-1373.
[2] Gschneidner Jr, K. A., and V. K. Pecharsky. "Thirty years of near room temperature magnetic cooling: Where we are today and future prospects." International journal of refrigeration 31.6 (2008): 945-961.
[3] Kitanovski, Andrej, and Peter W. Egolf. "Thermodynamics of magnetic refrigeration." International Journal of Refrigeration 29.1 (2006): 3-21.
[4] Gómez, J. Romero, et al. "Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration." Renewable and Sustainable Energy Reviews 17 (2013): 74-82.
[5] The Nobel Prize in Chemistry 1949. NobelPrize.org. Nobel Media AB 2020. Tue. 7 Jan 2020.
[6] Brown, G. V. "Magnetic heat pumping near room temperature." Journal of Applied Physics 47.8 (1976): 3673-3680.
[7] Pecharsky, A. O., K. A. Gschneidner Jr, and V. K. Pecharsky. "The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2." Journal of Applied Physics 93.8 (2003): 4722-4728.
[8] Brück, Ekkes. "Developments in magnetocaloric refrigeration." Journal of Physics D: Applied Physics 38.23 (2005): R381.
[9] Pecharsky, Vitalij K., and Karl A. Gschneidner Jr. "Magnetocaloric effect and magnetic refrigeration." Journal of Magnetism and Magnetic Materials 200.1-3 (1999): 44-56.
[10] Morrish, Allan H. "The physical principles of magnetism." The Physical Principles of Magnetism, by Allan H. Morrish, pp. 696. ISBN 0-7803-6029-X. Wiley-VCH, January 2001. (2001): 696.
[11] Pecharsky, Vitalij K., and Karl A. Gschneidner Jr. "Advanced magnetocaloric materials: What does the future hold?." International Journal of Refrigeration 29.8 (2006): 1239-1249.
[12] Mahdy, Aedah M. Jawad. "Overview for published Magnetocaloric Materials used in Magnetic Refrigeration applications." International Journal of Computation and Applied Sciences 3 (2017): 192-200.
[13] Hardik V. Shah, Rahul M. Shahapure, P.D. Menghani, V.P. Sawant, "Study of Magnetic Refrigerator Based on AMR Cycle, " International Conference on Ideas, Impact and Innovation in Mechanical Engineering ICIIIME 5 (2017): 582–588.
[14] Tocado, Leticia, Elías Palacios, and Ramón Burriel. "Entropy determinations and magnetocaloric parameters in systems with first-order transitions: Study of MnAs." Journal of Applied Physics 105.9 (2009): 093918.
[15] Yu, B. F., et al. "Review on research of room temperature magnetic refrigeration." International Journal of Refrigeration 26.6 (2003): 622-636.
[16] Balli, M., et al. "Advanced materials for magnetic cooling: Fundamentals and practical aspects." Applied Physics Reviews 4.2 (2017): 021305.
[17] Balli, M., D. Fruchart, and D. Gignoux. "Optimization of La (Fe, Co) 13− xSix based compounds for magnetic refrigeration." Journal of Physics: Condensed Matter 19.23 (2007): 236230.
[18] Balli, M., et al. "Engineering Of The Magnetic Cooling Systems: A Promising Research Axis For Environment And Energy Saving." 2011.
[19] Chen, Yuan-fu, et al. "Magnetic properties and magnetic entropy change of LaFe11. 5Si1. 5Hy interstitial compounds." Journal of Physics: Condensed Matter 15.7 (2003): L161.
[20] Franco, V., et al. "The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models." Annual Review of Materials Research 42 (2012): 305-342.
[21] Liu, Jian, et al. "Giant magnetocaloric effect driven by structural transitions." Nature materials 11.7 (2012): 620.
[22] Hai, Xueying. Magnetocaloric materials for magnetic refrigeration at room temperature. Diss. 2016.
[23] Klinar, Katja, et al. "New frontiers in magnetic refrigeration with high oscillation energy-efficient electromagnets." Applied energy 236 (2019): 1062-1077.
[24] GschneidnerJr, Karl A., V. K. Pecharsky, and A. O. Tsokol. "Recent developments in magnetocaloric materials." Reports on progress in physics 68.6 (2005): 1479.
[25] Tušek, Jaka, et al. "Magnetic cooling-development of magnetic refrigerator." Strojniški vestnik 5.55 (2009): 293-302.
[26] Raich, H., and Peter Blümler. "Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMR Mandhalas." Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering: An Educational Journal 23.1 (2004): 16-25.
[27] Zhu, Z. Q., and D. Howe. "Halbach permanent magnet machines and applications: a review." IEE Proceedings-Electric Power Applications 148.4 (2001): 299-308.
[28] Lee, S. J., et al. "Permanent magnet array for the magnetic refrigerator." Journal of Applied Physics 91.10 (2002): 8894-8896.
[29] Kim, Youngkwon, and Sangkwon Jeong. "Investigation on the room temperature active magnetic regenerative refrigerator with permanent magnet array." AIP Conference Proceedings. Vol. 1218. No. 1. AIP, 2010.
[30] Yu, Bingfeng, et al. "A review of magnetic refrigerator and heat pump prototypes built before the year 2010." International Journal of refrigeration 33.6 (2010): 1029-1060.
[31] Petersen, Thomas Frank, et al. "Two-dimensional mathematical model of a reciprocating room-temperature active magnetic regenerator." International Journal of Refrigeration 31.3 (2008): 432-443.
[32] Rowe, A., and A. Tura. "Experimental investigation of a three-material layered active magnetic regenerator." International Journal of Refrigeration 29.8 (2006): 1286-1293.
[33] Vasile, C., and C. Muller. "Innovative design of a magnetocaloric system." International Journal of Refrigeration 29.8 (2006): 1318-1326.
[34] Yao, G. H., M. Q. Gong, and J. F. Wu. "Experimental study on the performance of a room temperature magnetic refrigerator using permanent magnets." International Journal of Refrigeration 29.8 (2006): 1267-1273.
[35] Tura, A., and A. Rowe. "Permanent magnet magnetic refrigerator design and experimental characterization." International Journal of Refrigeration 34.3 (2011): 628-639.
[36] Engelbrecht, Kurt, et al. "Experimental results for a novel rotary active magnetic regenerator." International Journal of Refrigeration 35.6 (2012): 1498-1505.
[37] Balli, M., et al. "A pre-industrial magnetic cooling system for room temperature application." Applied energy 98 (2012): 556-561.
[38] Tušek, Jaka, et al. "A comprehensive experimental analysis of gadolinium active magnetic regenerators." Applied Thermal Engineering 53.1 (2013): 57-66.
[39] Arnold, D. S., et al. "Design improvements of a permanent magnet active magnetic refrigerator." International Journal of Refrigeration 37 (2014): 99-105.
[40] Mahdy, Aedah M. Jawad, Wahid S. Mohammad, and Talib K. Mortada. "A novel design of a domestic magnetic refrigerator." International Journal of Application or Innovation in Engineering & Management (IJAIEM) 4.2 (2015): 6-19.
[41] Aprea, C., et al. "An innovative rotary permanent magnet magnetic refrigerator based on AMR cycle." Thermal Energy Systems: Production, Storage, Utilization and the Environment, dated May (2015): 1-5.
[42] Aprea, C., et al. "A rotary permanent magnet magnetic refrigerator based on AMR cycle." Applied Thermal Engineering 101 (2016): 699-703.
[43] Aprea, C., A. Greco, and A. Maiorino. "A dimensionless numerical analysis for the optimization of an active magnetic regenerative refrigerant cycle." International journal of energy research 37.12 (2013): 1475-1487.
[44] Kitanovski, A., et al. "New thermodynamic cycles for magnetic refrigeration." International journal of refrigeration 37 (2014): 28-35.
[45] Ezan, Mehmet Akif, et al. "Numerical analysis of a near-room-temperature magnetic cooling system." international journal of refrigeration 75 (2017): 262-275.
[46] Aprea, C., A. Greco, and A. Maiorino. "A numerical analysis of an active magnetic regenerative cascade system." International journal of energy research 35.3 (2011): 177-188.
[47] Kamran, Muhammad Sajid, et al. "Performance optimisation of room temperature magnetic refrigerator with layered/multi-material microchannel regenerators." International Journal of Refrigeration 68 (2016): 94-106.
[48] Zhang, Mingkan, et al. "A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator." Scientific reports 7.1 (2017): 1-12.
[49] Bahl, Christian Robert Haffenden, et al. "A versatile magnetic refrigeration test device." Review of Scientific Instruments 79.9 (2008): 093906.
[50] Liu, Min, and Bingfeng Yu. "Numerical investigations on internal temperature distribution and refrigeration performance of reciprocating active magnetic regenerator of room temperature magnetic refrigeration." International Journal of Refrigeration 34.3 (2011): 617-627.
[51] Tishin, Aleksandr M., and Youry I. Spichkin. The magnetocaloric effect and its applications. CRC Press, 2016.
[52] M. Nickolay and H. Martin, "Improved approximation for the Nusselt number for hydrodynamically developed laminar flow between parallel plates," International Journal of Heat and Mass Transfer, vol. 45, pp. 3263-3266, Jul 2002.
[53] 瞿紹任, "磁致冷復器之性能提升設計," 碩士論文,國立清華大學, 動力機械工程學系, 2014.
[54] T. F. Petersen, N. Pryds, A. Smith, J. Hattel, H. Schmidt, and H.-J. Høgaard Knudsen, "Two-dimensional mathematical model of a reciprocating room-temperature Active Magnetic Regenerator," International Journal of Refrigeration, vol. 31, pp. 432-443, 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *