帳號:guest(3.135.212.157)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李俐慧
作者(外文):Ramli, Theresia Cecylia
論文名稱(中文):E.coli 轉化合成羥基十二烷酸甲酯
論文名稱(外文):SYNTHESIS OF 12-HYDROXY DODECANOIC ACID METHYL ESTER THROUGH WHOLE-CELL BIOTRANSFORMATION IN ESCHERICHIA COLI
指導教授(中文):胡育誠
指導教授(外文):HU, YU-CHEN
口試委員(中文):沈若樸
宋立瑜
口試委員(外文):SHEN, CLAIRE-ROAPU
SUNG, LI-YU
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032710
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:43
中文關鍵詞:CRISPR Cas9羟基十二烷酸大肠杆菌
外文關鍵詞:CRISPR Cas9DAMEHDAMEE.coli
相關次數:
  • 推薦推薦:0
  • 點閱點閱:91
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
末端氧化的12-羟基脂肪酸(w-OHFAs),例如12-羟基十二酸(w-OHC12),是尼龙12(聚酰胺)的重要组成部分,它是通用的,具有高耐久性和优异的耐磨性。当前,生产w-OHC12的常规方法不仅需要数步艰巨的步骤,而且价格昂贵,并且效率低且选择性差。全细胞生物转化可以替代传统方法,因为该方法可以直接氧化十二烷酸(C12脂肪酸)以高选择性生产w-OHC12。由于十二烷酸已知对微生物有毒,因此将其酯形式即十二烷酸甲酯用作底物。因此,产物w-OHC12也呈酯形式,即12-羟基十二烷酸甲酯(HDAME)。用大肠杆菌中表达的水生Marinobacter quaeolei VT8的细菌酶CYP153A进行生物转化。我们还尝试首先提高转化率,首先使该酶(A231G)发生突变,使其更适合C12转化,其次将其与来自巨大芽孢杆菌的P450 BM3的还原酶结构域融合。这种结合产生了0.48g / L的HDAME。为了在没有选择标记的情况下在大肠杆菌中进一步表达CYP153A,我们使用CRISPR Cas9系统将CYP153A基因敲入大肠杆菌基因组。
Terminally oxidized 12-hydroxy fatty acids (w-OHFAs), such as 12-hydroxydodecanoic acid (w-OHC12), are important building block of nylon 12 (polyamide) which is versatile, has a high durability, and excellent abrasion resistance. Currently , conventional way to produce w-OHC12 not only require several arduous steps, but also expensive and suffer from low efficiencies and poor selectivity. Whole cell biotransformation serves as a promising alternative to the conventional method as this method can directly oxidize dodecanoic acid (C12 fatty acid) to produce w-OHC12 with high selectivity. As dodecanoic acid is known to be toxic to microbes, its ester form which is, dodecanoic acid methyl ester is used as the substrate. Therefore the product, w-OHC12 is also in ester form , 12-hydroxydodecanoic acid methyl ester (HDAME). The biotransformation is performed with bacterial enzyme CYP153A from Marinobacter aquaeolei VT8 expressed in Escherichia coli. We also attempted to increase the conversion b y first, mutating this enzyme (A231G) to make it more suitable for C12 conversion and second, fusing it with the reductase domain of P450 BM3 from Bacillus megaterium. This combination resulted in the production of 0.48 g/L HDAME. To further express CYP153A in E.coli without selection marker, we used CRISPR Cas9 system to knock in CYP153A gene to E.coli genome.
摘要 i
ABSTRACT ii
TABLE OF CONTENT iii
LIST OF FIGURES v
LIST OF TABLES vi
CHAPTER 1: INTRODUCTION 1
CHAPTER 2: LITERATURE REVIEW 3
2.1. Substrate 3
2.2. Whole-Cell Biotransformation 4
2.2.1. Microorganism 4
2.2.2. Enzymes 5
2.2.3. Regulator protein 6
2.2.4. Transport protein 7
2.3. CRISPR/Cas system 7
2.3.1. Class 2 Type II CRISPR 8
CHAPTER 3: EXPERIMENTAL DESIGN 15
3.1. Chemical and materials 15
3.2. E.coli growth test in dodecanoic acid (DA) and dodecanoic acid methyl ester (DAME) 15
3.3. Construction of plasmid expressing CYP153A and its variation 15
3.4. Determination of CYP153A expression with SDS-PAGE 17
3.5. Determination of CYP153A expression using CO spectral assay 17
3.6. Shake flask biotransformation 17
3.7. Analysis 18
3.8. Construction of CRISPR system to induce DSB in E.coli 19
3.9. Integration of selected enzymes to genomic DNA with CRISPR 20
3.10. Curing Tc resistant gene from E.coli genome 20
3.11. Determination of alkL expression using real time polymerase chain reaction (RT-qPCR) 20
3.12. Two liquid phase biotransformation 21
CHAPTER 4: EXPERIMENTAL RESULT 22
4.1. E.coli W3110 growth rate in the presence of dodecanoic acid and dodecanoic acid methyl ester 22
4.2. Expression of CYP153A gene in E.coli W3110 22
4.3. Biotransformation with E.coli W3110 23
4.4. Integration of CYP153A cassette into E.coli W3110 genome with CRISPR Cas9 23
4.5. Using E.coli MG1655 as host to replace E.coli W3110 24
4.6. Integration of CYP153A cassette into E.coli MG1655 24
4.7. Expression of alkL and CYP153A in E.coli MG1655#1 24
CHAPTER 5: DISCUSSION 32
CHAPTER 6: FUTURE WORK 34
6.1. Expression of CYP153A in E.coli 34
6.2. Beta-oxidation cycle 34
6.3. Two Liquid Phase biotransformation 35
REFERENCES 39

1. Evonik. VESTAMID® L – POLYAMIDE 12. www.vestamid.com/product. Accessed: 2019 April
2. Schaffer S, Haas T. Biocatalytic and fermentative production of α,ω-bifunctional polymer precursors. Organic Process Research & Development. 2014(18): 752-76
3. Schrewe M, Magnusson AO, Willrodt C, Buhler B. Kinetic analysis of terminal and unactivated C-H bond oxyfunctionalization in fatty acid methyl esters by monooxygenase-based whole-cell biocatalysis. Advance Synthesis & Catalysis. 2011 Nov; 353: 3485-3495
4. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. App Microbiol Biotechnol. 2010; 85:1629-1642
5. Malca SH, Scheps D, Kuhnel L, Venegas E, Seifert A, Nestl BM, Hauer B. Bacterial CYP153A monooxygenases for the synthesis of omega-hydroxylated fatty acids. Chemical Communications. 2012; 42
6. Heap JT. Ehsaan M, Cooksley CM, Ng YK, Cartman ST, Winzer K, Minton NP. Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acid Research. 2012: 40(8): e59
7. Food application of palm oil. Accessed from mpoc.org.my/upload/P5-Food-Applications-in-Palm-Oil.pdf 2019 April
8. Lauric acid and Methyl Laurate. Accessed from pubchem.ncbi.nlm.nih.gov 2019 April
9. Fay JP, Farias RN. The Inhibitory Action of Fatty Acids on the Growth of Escherichia coli. Journal of General Microbiology. 1975; 91:233-240
10. Karbara JJ. Antimicrobial Agents Derived from Fatty Acids. Journal of the American Oil Chemists' Society. 1984 Feb; 61 (2):397-403
11. Lin B, Tao Y. Whole-cell biocatalysts by design. Microbial Cell Factories. 2017 Jun; 16(105)
12. Schrewe M,.Julsing MK, Buhler B, Schmid A. Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chem Soc Rev. 2013; 42: 6346-6377
13. Romero E, Castellanos RG, Gadda G, Fraajie MW, Mattevi A. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chemical Reviews. 2018 Jan; 118: 1742-1769
14. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B. Industrial biocatalysis today and tomorrow. Nature. 2001 Jan; 409:258-268
15. Lu W, Ness JE, Xie W, Zhang X, Minshull J, Gross RA. Biosynthesis of Monomers for Plastics from Renewable Oils. J. AM. Chem. Soc. 2010; 132: 15451-15455
16. Nie Y, Chi CQ, Fang H. Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL. Diverse alkane hydroxylase genes in microorganisms and environments. Nature Scientific Reports. 2014 May
17. Urlacher VB, Girhard M. Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends in Biotechnology. 2012 Jan; 30(1): 26-36
18. Karasawa M, Standfield JK, Yanagisawa S, Shoji O, Watanabe Y. Whole-cell biotransformation of benzene to phenol catalysed by intracellular cytochrome P450BM3 activated by external additives. Angewandte Chemie International Edition. 2018 May; 57: 12264
19. Scheps D, Malca SH, Richter SM, Marisch K, Nestl BM, Hauer B. Synthesis of -hydroxy dodecanoic acid based on an engineered CYP153A fusion construct. Microbial Biotechnology. 2013 Jun; 6: 694-707
20. Hoffman SM, Azari HRD, Spandolf C, Weissenborn MJ, Grogan G, Hauer B. Structure-guided redesign of CYP153AM.aq for the improved terminal hydroxylation of fatty acids. Chemcatchem. 2016; 8: 1-7
21. Grund A, Shapiro J, Fennewald M, Bacha P, Leahy J, Markbreiter K, Nieder N, Toepfer M. Regulation of Alkane Oxidation in Pseudomonas putida. Journal of Bacteriology. 1975 Aug; 123(2): 546-556
22. Ratajczak A, Geidorfer W, Hillen W. Expression of Alkane Hydroxylase from Acinetobacter sp. Strain ADP1 Is Induced by a Broad Range of n-Alkanes and Requires the Transcriptional Activator AlkR. Journal of Bacteriology. 1998 Nov; 123: 546-556
23. Hsieh SC, Wang JH, Lai YC, Su CY, Lee KT. Production of 1-decanol, 1-tetradecanol, and 1,12-dodecanediol through whole-cell biotransformation in Escherichia coli. Applied and Environmental Microbiology. 2018 Feb; 84(4): e01806-1
24. Chen RR. Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Appl Microbiol Biotechnol. 2007; 74(4):730–738
25. Kadisch M, Julsing MK, Schrewe M, Jehmlich N, Scheer B, Bergen MV, Schmid A, Buhler B. Maximization of cell viability rather than biocatalyst activity improves whole-cell -oxyfunctionalization performance. Biotechnology and Bioengineering. 2017 Apr; 114(4): 874-884
26. Julsing MK, Schrewe M, Conelissen S, Hermann I, Schmid A, Buhler B. Outer membrane protein alkL boosts biocatalytic oxyfunctionalization of hydrophobic substrates in Escherichia coli. Applied and Environmental Microbiology. 2012 Aug; 78(16): 5724-5733
27. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology. 2013 Jul; 31(7): 397-405
28. Wiedenheft,B., Sternberg,S.H. and Doudna,J.A. RNA guided genetic silencing systems in bacteria and archaea. Nature. 2012 ; 482:331-338
29. Sorek R, Kunin V, Hugenholtz. CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Review Microbiology. 2008 Mar; 6: 181-186
30. Marakova KS, Haft DH, Barrangou R, Broun SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, Oost Jvd, Koonin EV. Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology. 2011 Jun; 9:467-477
31. Barrangou R, Horvath P. CRISPR/Cas, the Immune System of Bacteria and Archaea. Science. 2010 Jan; 327(5962): 167-170
32. Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Computational Biology. 2005 Nov; 1(6): 474-483
33. Wang H, Russa ML, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annual Reviews Biochemistry. 2016 Apr; 85: 227-264
34. Marakova KS, Koonin EV. Annotation and Classification of CRISPR-Cas Systems. CRISPR: Methods and Protocols, Methods in Molecular Biology. 2015; 1311:47-75
35. Mir A, Edraki A, Lee J, Sontheimer EJ. Type II-C CRISPR-Cas9 Biology, Mechanism and Application. ACS Chem Biol. 2017 Dec; 13(2): 357-365
36. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dualRNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337:816–21
37. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 2012; 109:E2579–86
38. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31:827–832
39. Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78
40. Qi LS. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013)
41. Peters JM, Silvis MR, Zhao D, Hawkins JS, Gross CA, Qi LS. Bacterial CRISPR: accomplishments and prospects. Current Opinion in Microbiology. 2015; 27:121-12
42. Larson MH. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 2013; 8:2180–2196
43. Wu MY, Sung LY, Li H, Huang CH, Hu YC. Combining CRISPR and CRISPRi Systems for metabolic engineering of E. coli and 1,4-BDO biosynthesis. Synthetic Biology. 2017 Aug; 6: 2350-2361
44. Barrangou R. CRISPR-Cas systems andRNA-guided interference. Advanced Review. 2013; 4: 267-278
45. Fujita Y, Matsuoka H, Hirooka K. Regulation of fatty acid metabolism in bacteria. Molecular Microbiology. 2007 Oct; 66(4): 829-839
46. Eggink G, Lageveen RG, Altenburg B, Witholt B. Controlled and functional expresssion of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. The Journal of Biological Chemistry. 1987 Dec; 262(36): 17712-17718
47. Alper H, Fischer C, Nevoigt E, Stephanopoulus G. Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America. 2005 Sep; 102(36): 12678-12683
48. Tan Z, Black W, Yoon JM, Shanks JV, Jarboe LR. Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of fadL and OmpF. Microbial Cell Factories, 2017 16:38
49. Poo H, Song JJ, Hong SP, Lee SG, Sung MH. Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-. Biotechnology Letters, 2002, 24: 1185-1189
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *