|
1. Evonik. VESTAMID® L – POLYAMIDE 12. www.vestamid.com/product. Accessed: 2019 April 2. Schaffer S, Haas T. Biocatalytic and fermentative production of α,ω-bifunctional polymer precursors. Organic Process Research & Development. 2014(18): 752-76 3. Schrewe M, Magnusson AO, Willrodt C, Buhler B. Kinetic analysis of terminal and unactivated C-H bond oxyfunctionalization in fatty acid methyl esters by monooxygenase-based whole-cell biocatalysis. Advance Synthesis & Catalysis. 2011 Nov; 353: 3485-3495 4. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. App Microbiol Biotechnol. 2010; 85:1629-1642 5. Malca SH, Scheps D, Kuhnel L, Venegas E, Seifert A, Nestl BM, Hauer B. Bacterial CYP153A monooxygenases for the synthesis of omega-hydroxylated fatty acids. Chemical Communications. 2012; 42 6. Heap JT. Ehsaan M, Cooksley CM, Ng YK, Cartman ST, Winzer K, Minton NP. Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acid Research. 2012: 40(8): e59 7. Food application of palm oil. Accessed from mpoc.org.my/upload/P5-Food-Applications-in-Palm-Oil.pdf 2019 April 8. Lauric acid and Methyl Laurate. Accessed from pubchem.ncbi.nlm.nih.gov 2019 April 9. Fay JP, Farias RN. The Inhibitory Action of Fatty Acids on the Growth of Escherichia coli. Journal of General Microbiology. 1975; 91:233-240 10. Karbara JJ. Antimicrobial Agents Derived from Fatty Acids. Journal of the American Oil Chemists' Society. 1984 Feb; 61 (2):397-403 11. Lin B, Tao Y. Whole-cell biocatalysts by design. Microbial Cell Factories. 2017 Jun; 16(105) 12. Schrewe M,.Julsing MK, Buhler B, Schmid A. Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chem Soc Rev. 2013; 42: 6346-6377 13. Romero E, Castellanos RG, Gadda G, Fraajie MW, Mattevi A. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chemical Reviews. 2018 Jan; 118: 1742-1769 14. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B. Industrial biocatalysis today and tomorrow. Nature. 2001 Jan; 409:258-268 15. Lu W, Ness JE, Xie W, Zhang X, Minshull J, Gross RA. Biosynthesis of Monomers for Plastics from Renewable Oils. J. AM. Chem. Soc. 2010; 132: 15451-15455 16. Nie Y, Chi CQ, Fang H. Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL. Diverse alkane hydroxylase genes in microorganisms and environments. Nature Scientific Reports. 2014 May 17. Urlacher VB, Girhard M. Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends in Biotechnology. 2012 Jan; 30(1): 26-36 18. Karasawa M, Standfield JK, Yanagisawa S, Shoji O, Watanabe Y. Whole-cell biotransformation of benzene to phenol catalysed by intracellular cytochrome P450BM3 activated by external additives. Angewandte Chemie International Edition. 2018 May; 57: 12264 19. Scheps D, Malca SH, Richter SM, Marisch K, Nestl BM, Hauer B. Synthesis of -hydroxy dodecanoic acid based on an engineered CYP153A fusion construct. Microbial Biotechnology. 2013 Jun; 6: 694-707 20. Hoffman SM, Azari HRD, Spandolf C, Weissenborn MJ, Grogan G, Hauer B. Structure-guided redesign of CYP153AM.aq for the improved terminal hydroxylation of fatty acids. Chemcatchem. 2016; 8: 1-7 21. Grund A, Shapiro J, Fennewald M, Bacha P, Leahy J, Markbreiter K, Nieder N, Toepfer M. Regulation of Alkane Oxidation in Pseudomonas putida. Journal of Bacteriology. 1975 Aug; 123(2): 546-556 22. Ratajczak A, Geidorfer W, Hillen W. Expression of Alkane Hydroxylase from Acinetobacter sp. Strain ADP1 Is Induced by a Broad Range of n-Alkanes and Requires the Transcriptional Activator AlkR. Journal of Bacteriology. 1998 Nov; 123: 546-556 23. Hsieh SC, Wang JH, Lai YC, Su CY, Lee KT. Production of 1-decanol, 1-tetradecanol, and 1,12-dodecanediol through whole-cell biotransformation in Escherichia coli. Applied and Environmental Microbiology. 2018 Feb; 84(4): e01806-1 24. Chen RR. Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Appl Microbiol Biotechnol. 2007; 74(4):730–738 25. Kadisch M, Julsing MK, Schrewe M, Jehmlich N, Scheer B, Bergen MV, Schmid A, Buhler B. Maximization of cell viability rather than biocatalyst activity improves whole-cell -oxyfunctionalization performance. Biotechnology and Bioengineering. 2017 Apr; 114(4): 874-884 26. Julsing MK, Schrewe M, Conelissen S, Hermann I, Schmid A, Buhler B. Outer membrane protein alkL boosts biocatalytic oxyfunctionalization of hydrophobic substrates in Escherichia coli. Applied and Environmental Microbiology. 2012 Aug; 78(16): 5724-5733 27. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology. 2013 Jul; 31(7): 397-405 28. Wiedenheft,B., Sternberg,S.H. and Doudna,J.A. RNA guided genetic silencing systems in bacteria and archaea. Nature. 2012 ; 482:331-338 29. Sorek R, Kunin V, Hugenholtz. CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Review Microbiology. 2008 Mar; 6: 181-186 30. Marakova KS, Haft DH, Barrangou R, Broun SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, Oost Jvd, Koonin EV. Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology. 2011 Jun; 9:467-477 31. Barrangou R, Horvath P. CRISPR/Cas, the Immune System of Bacteria and Archaea. Science. 2010 Jan; 327(5962): 167-170 32. Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Computational Biology. 2005 Nov; 1(6): 474-483 33. Wang H, Russa ML, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annual Reviews Biochemistry. 2016 Apr; 85: 227-264 34. Marakova KS, Koonin EV. Annotation and Classification of CRISPR-Cas Systems. CRISPR: Methods and Protocols, Methods in Molecular Biology. 2015; 1311:47-75 35. Mir A, Edraki A, Lee J, Sontheimer EJ. Type II-C CRISPR-Cas9 Biology, Mechanism and Application. ACS Chem Biol. 2017 Dec; 13(2): 357-365 36. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dualRNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337:816–21 37. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 2012; 109:E2579–86 38. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31:827–832 39. Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78 40. Qi LS. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013) 41. Peters JM, Silvis MR, Zhao D, Hawkins JS, Gross CA, Qi LS. Bacterial CRISPR: accomplishments and prospects. Current Opinion in Microbiology. 2015; 27:121-12 42. Larson MH. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 2013; 8:2180–2196 43. Wu MY, Sung LY, Li H, Huang CH, Hu YC. Combining CRISPR and CRISPRi Systems for metabolic engineering of E. coli and 1,4-BDO biosynthesis. Synthetic Biology. 2017 Aug; 6: 2350-2361 44. Barrangou R. CRISPR-Cas systems andRNA-guided interference. Advanced Review. 2013; 4: 267-278 45. Fujita Y, Matsuoka H, Hirooka K. Regulation of fatty acid metabolism in bacteria. Molecular Microbiology. 2007 Oct; 66(4): 829-839 46. Eggink G, Lageveen RG, Altenburg B, Witholt B. Controlled and functional expresssion of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. The Journal of Biological Chemistry. 1987 Dec; 262(36): 17712-17718 47. Alper H, Fischer C, Nevoigt E, Stephanopoulus G. Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America. 2005 Sep; 102(36): 12678-12683 48. Tan Z, Black W, Yoon JM, Shanks JV, Jarboe LR. Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of fadL and OmpF. Microbial Cell Factories, 2017 16:38 49. Poo H, Song JJ, Hong SP, Lee SG, Sung MH. Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-. Biotechnology Letters, 2002, 24: 1185-1189
|