帳號:guest(3.149.229.53)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):易沅興
作者(外文):Yi, Yuan-Hsing.
論文名稱(中文):導電高分子與塗碳集流體用於鋰離子電池之研究
論文名稱(外文):Studies of Conducting polymers and carbon-coated current collector on lithium ion batteries
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing-Yu
口試委員(中文):周更生
曾院介
口試委員(外文):Chou, Kan-Sen
Tseng, Yuan-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032562
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:56
中文關鍵詞:鋰離子電池矽基負極導電高分子塗碳集流體循環表現性
外文關鍵詞:Lithium-ion batterySilicon-based anodeConductive polymerCarbon Coated copper layercycle performance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:290
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
矽,做為鋰離子電池中高理論電容量(3579 mA h g-1)負極材料已逐漸被重視而作應用,然而,許多問題仍需要克服如劇烈的體積膨脹~300%、差的循環穩定性,為了解決這些問題奈米結構的矽已逐漸被研究出來,包括矽奈米線、矽奈米顆粒、中空矽球、Yolk-Shell結構等等。然而最主要的問題是使用的導電添加劑與矽本身並無鍵結能力,導致充放電過程中容易失去電子接觸,在此我們提出以導電高分子作為矽基負極黏著劑,藉由高分子本身的高電子電導度(5*10-6 S cm-1)以及具有羧酸官能基的特性,使電池效果能大幅提升。Si/P[T(EH)TPA]在鋰離子電池中,以0.2A g-1電流密度充放電循環兩百圈後,電容量仍有1760 mA h g-1(第二圈的75%),且在 4A g-1的充放電循環測試經過1000個循環仍能保有880 mAh g-1以上的克電容量。這些測試說明了Si/P[T(EH)-TPA]作為鋰離子電池的黏著劑是極度具有價值的,且能應用在更多新穎的儲能裝置上。
傳統的電極製備方式是直接將材料塗佈於金屬集流體上,然而對於電極與集流體間接觸電阻的研究卻是相對少數。本研究著重於比較不同的集流體作為提升電池穩定性的關鍵,藉由使用碳塗覆之正/負極集流體,由於其具有相對粗糙的表面能提升材料與集流體之間的黏著能力,經由膠帶剝離測試結果,未塗覆碳層的電極其活性材料與集流體明顯剝離,表明塗碳層確實能減少材料剝落的問題,並且藉由EIS測試也顯示塗碳層能有效降低電池內部阻抗。除了半電池的測試外,我們也實際將塗碳層應用於鈕扣型全電池,在1C的充放電速率下,電池的穩定性有很顯著的提升,最後更進一步組裝成軟包式全電池,並且成功的點亮了紫色的LED燈板。
Silicon, as an anode material with high theoretical capacity (3579 mA h g-1) in lithium-ion batteries has been gradually applied. However, many problems still need to be overcome, such as significant volume expansion ~300%, poor cyclic stability. In order to address these issues, the nanostructures have gradually been studied, including silicon nanowires, silicon nanoparticles, hollow silicon spheres, Yolk-Shell structures and so on. However, the main issue is that Si easily to lose the electronic connection during cycling because there is no bonding ability between active materials and conductive additives. Here, we propose to use a conductive polymer as a silicon-based anode adhesive. The high electron conductivity (5*10-6 S cm-1) of the polymer and the carboxylic acid functional group can effectively improve the battery performance. After charging and discharging at a current density of 0.2A g-1 for two hundred cycles, the capacity still has 1760 mA h g-1 (75% of the second circle), and at current density of 4 A g-1 can exceed 1000 cycles and maintain a capacity more than 880 mA h g-1. These tests demonstrate that Si/P[T(EH)-TPA] is extremely valuable as a binder for lithium-ion batteries and can be applied to more innovative energy storage devices.
The traditional way of electrodes for lithium-ion batteries is directly coated materials on metal current collectors. However, only a few studies discuss of internal resistance. This study focuses on comparing different current collectors as the key to improving battery stability. By using carbon-coated positive/negative current collectors prepared by our laboratory, the relatively rough surface enhances the adhesion between the material and the current collector and reducing the detachment of the material during charging and discharging. Through peel test results, the electrode without the carbon layer was significantly peeled off, indicating that the carbon-coating layer can reduce the problem of material flaked. EIS test also shows that the carbon coating layer can effectively reduce the internal impedance of the battery. In addition to the analysis of the half-cell, we also applied the carbon-coated layer to full cell. At the charging and discharging rate of 1C, stability of the battery significantly improved, and finally assembled into a pouch-type full cell and successfully light up the purple LED light board.
中文摘要 I
Abstract II
Contents IV
List of Tables VI
List of Figures VII
Chapter 1 conductive polymer as binder in silicon anode and Its Performance of Lithium-Ion Batteries 1
1.1. Introduction 1
1.1.1. Li-ion batteries for energy storage 1
1.1.2. Si based lithium ion batteries 2
1.1.3. Nanostructured of Si anodes 4
1.1.4. Binders for si based anode 6
1.1.5. Conjugated polymer binders 7
1-2 Experimental 12
1-2-1 Materials 12
1-2-2 Synthesis of monomers 12
1-2-3 Synthesis of polymers 15
1-2-4 Characterization 15
1-2-5 Electrochemical characterization 16
1-3 Results and Discussion 16
1.3.1. Analysis of Polymers 16
1.3.2. Electrochemical performance 20
1-4 Conclusion 29
1-5 References 30
Chapter 2 Studies of carbon-coated current collector on lithium ion batteries 34
2-1 Introduction 34
2-2 Experimental 41
2-2-1 Materials 41
2-2-2 Characterization 41
2-2-3 Electrochemical characterization 41
2-3 Results and Discussion 42
2-4 Conclusion 51
2-5 References 52

1. Johnson, B. A.; White, R. E., Characterization of commercially available lithium-ion batteries. J. Power Sources 1998, 70 (1), 48-54.
2. Nitta, N.; Yushin, G., High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles. 2014, 31 (3), 317-336.
3. Hayner, C. M.; Zhao, X.; Kung, H. H., Materials for Rechargeable Lithium-Ion Batteries. 2012, 3 (1), 445-471.
4. Zhang, W.-J., Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196 (3), 877-885.
5. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359.
6. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
7. Wu, H.; Cui, Y., Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7 (5), 414-429.
8. Delong, M.; Zhanyi, C.; Anming, H., Si-Based Anode Materials for Li-ion Batteries: A Mini Review. Nano-Micro Letters 2014, 6 (4).
9. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology 2007, 3, 31.
10. Chan, C. K.; Ruffo, R.; Hong, S. S.; Cui, Y., Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 2009, 189 (2), 1132-1140.
11. Ge, M.; Rong, J.; Fang, X.; Zhou, C., Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life. Nano Letters 2012, 12 (5), 2318-2323.
12. Cui, L.-F.; Yang, Y.; Hsu, C.-M.; Cui, Y., Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Letters 2009, 9 (9), 3370-3374.
13. Cui, L.-F.; Ruffo, R.; Chan, C. K.; Peng, H.; Cui, Y., Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Letters 2009, 9 (1), 491-495.
14. Hwang, T. H.; Lee, Y. M.; Kong, B.-S.; Seo, J.-S.; Choi, J. W., Electrospun Core–Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes. Nano Letters 2012, 12 (2), 802-807.
15. Li, X.; Meduri, P.; Chen, X.; Qi, W.; Engelhard, M. H.; Xu, W.; Ding, F.; Xiao, J.; Wang, W.; Wang, C.; Zhang, J.-G.; Liu, J., Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. Journal of Materials Chemistry 2012, 22 (22), 11014-11017.
16. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y., Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life. Nano Letters 2011, 11 (7), 2949-2954.
17. Liu, N.; Lu, Z.; Zhao, J.; McDowell, M. T.; Lee, H.-W.; Zhao, W.; Cui, Y., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotechnology 2014, 9, 187.
18. Yang, J.; Wang, Y.-X.; Chou, S.-L.; Zhang, R.; Xu, Y.; Fan, J.; Zhang, W.-x.; Kun Liu, H.; Zhao, D.; Xue Dou, S., Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 2015, 18, 133-142.
19. Yang, L. Y.; Li, H. Z.; Liu, J.; Sun, Z. Q.; Tang, S. S.; Lei, M., Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Scientific Reports 2015, 5, 10908.
20. Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G., Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. ACS Applied Materials & Interfaces 2010, 2 (11), 3004-3010.
21. Delpuech, N.; Mazouzi, D.; Dupre, N.; Moreau, P.; Cerbelaud, M.; Bridel, J.; Badot, J.-C.; De Vito, E.; Guyomard, D.; Lestriez, B. J. T. J. o. P. C. C., Critical role of silicon nanoparticles surface on lithium cell electrochemical performance analyzed by FTIR, Raman, EELS, XPS, NMR, and BDS spectroscopies. 2014, 118 (31), 17318-17331.
22. Barbucci, R.; Magnani, A.; Consumi, M. J. M., Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. 2000, 33 (20), 7475-7480.
23. Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. J. S., A major constituent of brown algae for use in high-capacity Li-ion batteries. 2011, 1209150.
24. Guo, Z.; Wang, J.; Liu, H.; Dou, S. J. J. o. P. S., Study of silicon/polypyrrole composite as anode materials for Li-ion batteries. 2005, 146 (1-2), 448-451.
25. Cai, J.-J.; Zuo, P.-J.; Cheng, X.-Q.; Xu, Y.-H.; Yin, G.-P. J. E. C., Nano-silicon/polyaniline composite for lithium storage. 2010, 12 (11), 1572-1575.
26. Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde‐Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W. J. A. M., Polymers with tailored electronic structure for high capacity lithium battery electrodes. 2011, 23 (40), 4679-4683.
27. Wu, M.; Xiao, X.; Vukmirovic, N.; Xun, S.; Das, P. K.; Song, X.; Olalde-Velasco, P.; Wang, D.; Weber, A. Z.; Wang, L.-W. J. J. o. t. A. C. S., Toward an ideal polymer binder design for high-capacity battery anodes. 2013, 135 (32), 12048-12056.
28. Chen, Y.; Zeng, S.; Qian, J.; Wang, Y.; Cao, Y.; Yang, H.; Ai, X., Li+-Conductive Polymer-Embedded Nano-Si Particles as Anode Material for Advanced Li-ion Batteries. ACS Applied Materials & Interfaces 2014, 6 (5), 3508-3512.
29. Liu, D.; Zhao, Y.; Tan, R.; Tian, L.-L.; Liu, Y.; Chen, H.; Pan, F., Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy 2017, 36, 206-212.
30. Klavetter, K. C.; Wood, S. M.; Lin, Y.-M.; Snider, J. L.; Davy, N. C.; Chockla, A. M.; Romanovicz, D. K.; Korgel, B. A.; Lee, J.-W.; Heller, A.; Mullins, C. B., A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life. J. Power Sources 2013, 238, 123-136.
31. Chockla, A. M.; Bogart, T. D.; Hessel, C. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries. J. Phys. Chem. C 2012, 116 (34), 18079-18086.
32. Yu, D. Y. W.; Hoster, H. E.; Batabyal, S. K., Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Sci. Rep. 2014, 4, 4562.
33. Nguyen, D.-T.; Kang, J.; Nam, K.-M.; Paik, Y.; Song, S.-W., Understanding interfacial chemistry and stability for performance improvement and fade of high-energy Li-ion battery of LiNi0.5Co0.2Mn0.3O2//silicon-graphite. J. Power Sources 2016, 303, 150-158.
34. Youn, D. H.; Patterson, N. A.; Park, H.; Heller, A.; Mullins, C. B., Facile Synthesis of Ge/N-Doped Carbon Spheres with Varying Nitrogen Content for Lithium Ion Battery Anodes. ACS Applied Materials & Interfaces 2016, 8 (41), 27788-27794.
35. Oh, M.; Na, S.; Woo, C.-S.; Jeong, J.-H.; Kim, S.-S.; Bachmatiuk, A.; Rümmeli, M. H.; Hyun, S.; Lee, H.-J., Observation of Electrochemically Driven Elemental Segregation in a Si Alloy Thin-Film Anode and its Effects on Cyclic Stability for Li-Ion Batteries. Adv. Energy Mater. 2015, 5 (22), 1501136.
36. Papageorgiou, S. K.; Kouvelos, E. P.; Favvas, E. P.; Sapalidis, A. A.; Romanos, G. E.; Katsaros, F. K. J. C. r., Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. 2010, 345 (4), 469-473.
37. Chen, S.; Bao, P.; Huang, X.; Sun, B.; Wang, G. J. N. R., Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. 2014, 7 (1), 85-94.
38. Wu, L.; Yang, J.; Zhou, X.; Zhang, M.; Ren, Y.; Nie, Y., Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries. Journal of Materials Chemistry A 2016, 4 (29), 11381-11387.
39. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y., Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS Nano 2012, 6 (2), 1522-1531.
40. Chen, S.; Shen, L.; Aken, P. A. v.; Maier, J.; Yu, Y., Dual‐Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium‐Ion Batteries. Advanced Materials 2017, 29 (21).
41. Li, J.; Dahn, J. J. J. o. T. E. S., An in situ X-ray diffraction study of the reaction of Li with crystalline Si. 2007, 154 (3), A156-A161
1. Johnson, B. A.; White, R. E., Characterization of commercially available lithium-ion batteries. J. Power Sources 1998, 70 (1), 48-54.
2. Nitta, N.; Yushin, G., High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles. 2014, 31 (3), 317-336.
3. Hayner, C. M.; Zhao, X.; Kung, H. H., Materials for Rechargeable Lithium-Ion Batteries. 2012, 3 (1), 445-471.
4. Zhang, W.-J., Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196 (3), 877-885.
5. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359.
6. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
7. Wu, H.; Cui, Y., Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7 (5), 414-429.
8. Delong, M.; Zhanyi, C.; Anming, H., Si-Based Anode Materials for Li-ion Batteries: A Mini Review. Nano-Micro Letters 2014, 6 (4).
9. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology 2007, 3, 31.
10. Chan, C. K.; Ruffo, R.; Hong, S. S.; Cui, Y., Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 2009, 189 (2), 1132-1140.
11. Ge, M.; Rong, J.; Fang, X.; Zhou, C., Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life. Nano Letters 2012, 12 (5), 2318-2323.
12. Cui, L.-F.; Yang, Y.; Hsu, C.-M.; Cui, Y., Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Letters 2009, 9 (9), 3370-3374.
13. Cui, L.-F.; Ruffo, R.; Chan, C. K.; Peng, H.; Cui, Y., Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Letters 2009, 9 (1), 491-495.
14. Hwang, T. H.; Lee, Y. M.; Kong, B.-S.; Seo, J.-S.; Choi, J. W., Electrospun Core–Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes. Nano Letters 2012, 12 (2), 802-807.
15. Li, X.; Meduri, P.; Chen, X.; Qi, W.; Engelhard, M. H.; Xu, W.; Ding, F.; Xiao, J.; Wang, W.; Wang, C.; Zhang, J.-G.; Liu, J., Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. Journal of Materials Chemistry 2012, 22 (22), 11014-11017.
16. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y., Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life. Nano Letters 2011, 11 (7), 2949-2954.
17. Liu, N.; Lu, Z.; Zhao, J.; McDowell, M. T.; Lee, H.-W.; Zhao, W.; Cui, Y., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotechnology 2014, 9, 187.
18. Yang, J.; Wang, Y.-X.; Chou, S.-L.; Zhang, R.; Xu, Y.; Fan, J.; Zhang, W.-x.; Kun Liu, H.; Zhao, D.; Xue Dou, S., Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 2015, 18, 133-142.
19. Yang, L. Y.; Li, H. Z.; Liu, J.; Sun, Z. Q.; Tang, S. S.; Lei, M., Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Scientific Reports 2015, 5, 10908.
20. Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G., Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. ACS Applied Materials & Interfaces 2010, 2 (11), 3004-3010.
21. Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. J. S., A major constituent of brown algae for use in high-capacity Li-ion batteries. 2011, 1209150.
22. Cai, J.-J.; Zuo, P.-J.; Cheng, X.-Q.; Xu, Y.-H.; Yin, G.-P. J. E. C., Nano-silicon/polyaniline composite for lithium storage. 2010, 12 (11), 1572-1575.
23. Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde‐Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W. J. A. M., Polymers with tailored electronic structure for high capacity lithium battery electrodes. 2011, 23 (40), 4679-4683.
24. Liu, D.; Zhao, Y.; Tan, R.; Tian, L.-L.; Liu, Y.; Chen, H.; Pan, F., Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy 2017, 36, 206-212.
25. Klavetter, K. C.; Wood, S. M.; Lin, Y.-M.; Snider, J. L.; Davy, N. C.; Chockla, A. M.; Romanovicz, D. K.; Korgel, B. A.; Lee, J.-W.; Heller, A.; Mullins, C. B., A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life. J. Power Sources 2013, 238, 123-136.
26. Chockla, A. M.; Bogart, T. D.; Hessel, C. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries. J. Phys. Chem. C 2012, 116 (34), 18079-18086.
27. Yu, D. Y. W.; Hoster, H. E.; Batabyal, S. K., Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Sci. Rep. 2014, 4, 4562.
28. Nguyen, D.-T.; Kang, J.; Nam, K.-M.; Paik, Y.; Song, S.-W., Understanding interfacial chemistry and stability for performance improvement and fade of high-energy Li-ion battery of LiNi0.5Co0.2Mn0.3O2//silicon-graphite. J. Power Sources 2016, 303, 150-158.
29. Youn, D. H.; Patterson, N. A.; Park, H.; Heller, A.; Mullins, C. B., Facile Synthesis of Ge/N-Doped Carbon Spheres with Varying Nitrogen Content for Lithium Ion Battery Anodes. ACS Applied Materials & Interfaces 2016, 8 (41), 27788-27794.
30. Oh, M.; Na, S.; Woo, C.-S.; Jeong, J.-H.; Kim, S.-S.; Bachmatiuk, A.; Rümmeli, M. H.; Hyun, S.; Lee, H.-J., Observation of Electrochemically Driven Elemental Segregation in a Si Alloy Thin-Film Anode and its Effects on Cyclic Stability for Li-Ion Batteries. Adv. Energy Mater. 2015, 5 (22), 1501136.
31. Papageorgiou, S. K.; Kouvelos, E. P.; Favvas, E. P.; Sapalidis, A. A.; Romanos, G. E.; Katsaros, F. K. J. C. r., Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. 2010, 345 (4), 469-473.
32. Chen, S.; Bao, P.; Huang, X.; Sun, B.; Wang, G. J. N. R., Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. 2014, 7 (1), 85-94.
33. Wu, L.; Yang, J.; Zhou, X.; Zhang, M.; Ren, Y.; Nie, Y., Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries. Journal of Materials Chemistry A 2016, 4 (29), 11381-11387.
34. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y., Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS Nano 2012, 6 (2), 1522-1531.
35. Chen, S.; Shen, L.; Aken, P. A. v.; Maier, J.; Yu, Y., Dual‐Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium‐Ion Batteries. Advanced Materials 2017, 29 (21).
36. Li, J.; Dahn, J. J. J. o. T. E. S., An in situ X-ray diffraction study of the reaction of Li with crystalline Si. 2007, 154 (3), A156-A161.
37. De las Casas, C.; Li, W., A review of application of carbon nanotubes for lithium ion battery anode material. Journal of Power Sources 2012, 208, 74-85.
38. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials today 2015, 18 (5), 252-264.
39. Goodenough, J. B.; Park, K.-S., The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-1176.
40. Goodenough, J. B., Evolution of strategies for modern rechargeable batteries. Accounts of chemical research 2012, 46 (5), 1053-1061.
41. Wang, X.; Sone, Y.; Segami, G.; Naito, H.; Yamada, C.; Kibe, K., Understanding volume change in lithium-ion cells during charging and discharging using in situ measurements. Journal of The Electrochemical Society 2007, 154 (1), A14-A21.
42. Verma, P.; Maire, P.; Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341.
43. Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H., A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid state ionics 2002, 148 (3-4), 405-416.
44. Nie, M.; Chalasani, D.; Abraham, D. P.; Chen, Y.; Bose, A.; Lucht, B. L., Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. The Journal of Physical Chemistry C 2013, 117 (3), 1257-1267.
45. Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. Journal of power sources 1997, 68 (2), 320-325.
46. Chen, Y.; Devine, T. M.; Evans, J. W.; Monteiro, O. R.; Brown, I. G., Examination of the corrosion behavior of aluminum current collectors in lithium/polymer batteries. Journal of The Electrochemical Society 1999, 146 (4), 1310-1317.
47. Zhang, X.; Winget, B.; Doeff, M.; Evans, J. W.; Devine, T. M., Corrosion of aluminum current collectors in lithium-ion batteries with electrolytes containing LiPF6. Journal of The Electrochemical Society 2005, 152 (11), B448-B454.
48. Yang, H.; Kwon, K.; Devine, T. M.; Evans, J. W., Aluminum corrosion in lithium batteries an investigation using the electrochemical quartz crystal microbalance. Journal of The Electrochemical Society 2000, 147 (12), 4399-4407.
49. Wang, X.; Yasukawa, E.; Mori, S., Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes. Electrochimica Acta 2000, 45 (17), 2677-2684.
50. Yamada, Y.; Chiang, C. H.; Sodeyama, K.; Wang, J.; Tateyama, Y.; Yamada, A., Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes. ChemElectroChem 2015, 2 (11), 1687-1694.
51. Zhang, S.; Jow, T., Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources 2002, 109 (2), 458-464.
52. Hyams, T. C.; Go, J.; Devine, T. M., Corrosion of aluminum current collectors in high-power lithium-ion batteries for use in hybrid electric vehicles. Journal of The Electrochemical Society 2007, 154 (8), C390-C396.
53. Nakanishi, S.; Suzuki, T.; Qi, C.; Akikusa, J.; Nakamura, K., Effect of surface treatment for aluminum foils on discharge properties of lithium-ion battery. Transactions of Nonferrous Metals Society of China 2014, 24 (7), 2314-2319.
54. Wang, M.; Tang, M.; Chen, S.; Ci, H.; Wang, K.; Shi, L.; Lin, L.; Ren, H.; Shan, J.; Gao, P., Graphene‐Armored Aluminum Foil with Enhanced Anticorrosion Performance as Current Collectors for Lithium‐Ion Battery. Advanced Materials 2017, 29 (47), 1703882.
55. Jiang, J.; Nie, P.; Ding, B.; Wu, W.; Chang, Z.; Wu, Y.; Dou, H.; Zhang, X., Effect of graphene modified Cu current collector on the performance of Li4Ti5O12 anode for lithium-ion batteries. ACS applied materials & interfaces 2016, 8 (45), 30926-30932.
56. Liu, X.; Wang, D.; Zhang, B.; Luan, C.; Qin, T.; Zhang, W.; Wang, D.; Shi, X.; Deng, T.; Zheng, W., Vertical graphene nanowalls coating of copper current collector for enhancing rate performance of graphite anode of Li ion battery: The merit of optimized interface architecture. Electrochimica Acta 2018, 268, 234-240.
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *