|
1. Johnson, B. A.; White, R. E., Characterization of commercially available lithium-ion batteries. J. Power Sources 1998, 70 (1), 48-54. 2. Nitta, N.; Yushin, G., High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles. 2014, 31 (3), 317-336. 3. Hayner, C. M.; Zhao, X.; Kung, H. H., Materials for Rechargeable Lithium-Ion Batteries. 2012, 3 (1), 445-471. 4. Zhang, W.-J., Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196 (3), 877-885. 5. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359. 6. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262. 7. Wu, H.; Cui, Y., Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7 (5), 414-429. 8. Delong, M.; Zhanyi, C.; Anming, H., Si-Based Anode Materials for Li-ion Batteries: A Mini Review. Nano-Micro Letters 2014, 6 (4). 9. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology 2007, 3, 31. 10. Chan, C. K.; Ruffo, R.; Hong, S. S.; Cui, Y., Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 2009, 189 (2), 1132-1140. 11. Ge, M.; Rong, J.; Fang, X.; Zhou, C., Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life. Nano Letters 2012, 12 (5), 2318-2323. 12. Cui, L.-F.; Yang, Y.; Hsu, C.-M.; Cui, Y., Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Letters 2009, 9 (9), 3370-3374. 13. Cui, L.-F.; Ruffo, R.; Chan, C. K.; Peng, H.; Cui, Y., Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Letters 2009, 9 (1), 491-495. 14. Hwang, T. H.; Lee, Y. M.; Kong, B.-S.; Seo, J.-S.; Choi, J. W., Electrospun Core–Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes. Nano Letters 2012, 12 (2), 802-807. 15. Li, X.; Meduri, P.; Chen, X.; Qi, W.; Engelhard, M. H.; Xu, W.; Ding, F.; Xiao, J.; Wang, W.; Wang, C.; Zhang, J.-G.; Liu, J., Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. Journal of Materials Chemistry 2012, 22 (22), 11014-11017. 16. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y., Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life. Nano Letters 2011, 11 (7), 2949-2954. 17. Liu, N.; Lu, Z.; Zhao, J.; McDowell, M. T.; Lee, H.-W.; Zhao, W.; Cui, Y., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotechnology 2014, 9, 187. 18. Yang, J.; Wang, Y.-X.; Chou, S.-L.; Zhang, R.; Xu, Y.; Fan, J.; Zhang, W.-x.; Kun Liu, H.; Zhao, D.; Xue Dou, S., Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 2015, 18, 133-142. 19. Yang, L. Y.; Li, H. Z.; Liu, J.; Sun, Z. Q.; Tang, S. S.; Lei, M., Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Scientific Reports 2015, 5, 10908. 20. Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G., Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. ACS Applied Materials & Interfaces 2010, 2 (11), 3004-3010. 21. Delpuech, N.; Mazouzi, D.; Dupre, N.; Moreau, P.; Cerbelaud, M.; Bridel, J.; Badot, J.-C.; De Vito, E.; Guyomard, D.; Lestriez, B. J. T. J. o. P. C. C., Critical role of silicon nanoparticles surface on lithium cell electrochemical performance analyzed by FTIR, Raman, EELS, XPS, NMR, and BDS spectroscopies. 2014, 118 (31), 17318-17331. 22. Barbucci, R.; Magnani, A.; Consumi, M. J. M., Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. 2000, 33 (20), 7475-7480. 23. Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. J. S., A major constituent of brown algae for use in high-capacity Li-ion batteries. 2011, 1209150. 24. Guo, Z.; Wang, J.; Liu, H.; Dou, S. J. J. o. P. S., Study of silicon/polypyrrole composite as anode materials for Li-ion batteries. 2005, 146 (1-2), 448-451. 25. Cai, J.-J.; Zuo, P.-J.; Cheng, X.-Q.; Xu, Y.-H.; Yin, G.-P. J. E. C., Nano-silicon/polyaniline composite for lithium storage. 2010, 12 (11), 1572-1575. 26. Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde‐Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W. J. A. M., Polymers with tailored electronic structure for high capacity lithium battery electrodes. 2011, 23 (40), 4679-4683. 27. Wu, M.; Xiao, X.; Vukmirovic, N.; Xun, S.; Das, P. K.; Song, X.; Olalde-Velasco, P.; Wang, D.; Weber, A. Z.; Wang, L.-W. J. J. o. t. A. C. S., Toward an ideal polymer binder design for high-capacity battery anodes. 2013, 135 (32), 12048-12056. 28. Chen, Y.; Zeng, S.; Qian, J.; Wang, Y.; Cao, Y.; Yang, H.; Ai, X., Li+-Conductive Polymer-Embedded Nano-Si Particles as Anode Material for Advanced Li-ion Batteries. ACS Applied Materials & Interfaces 2014, 6 (5), 3508-3512. 29. Liu, D.; Zhao, Y.; Tan, R.; Tian, L.-L.; Liu, Y.; Chen, H.; Pan, F., Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy 2017, 36, 206-212. 30. Klavetter, K. C.; Wood, S. M.; Lin, Y.-M.; Snider, J. L.; Davy, N. C.; Chockla, A. M.; Romanovicz, D. K.; Korgel, B. A.; Lee, J.-W.; Heller, A.; Mullins, C. B., A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life. J. Power Sources 2013, 238, 123-136. 31. Chockla, A. M.; Bogart, T. D.; Hessel, C. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries. J. Phys. Chem. C 2012, 116 (34), 18079-18086. 32. Yu, D. Y. W.; Hoster, H. E.; Batabyal, S. K., Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Sci. Rep. 2014, 4, 4562. 33. Nguyen, D.-T.; Kang, J.; Nam, K.-M.; Paik, Y.; Song, S.-W., Understanding interfacial chemistry and stability for performance improvement and fade of high-energy Li-ion battery of LiNi0.5Co0.2Mn0.3O2//silicon-graphite. J. Power Sources 2016, 303, 150-158. 34. Youn, D. H.; Patterson, N. A.; Park, H.; Heller, A.; Mullins, C. B., Facile Synthesis of Ge/N-Doped Carbon Spheres with Varying Nitrogen Content for Lithium Ion Battery Anodes. ACS Applied Materials & Interfaces 2016, 8 (41), 27788-27794. 35. Oh, M.; Na, S.; Woo, C.-S.; Jeong, J.-H.; Kim, S.-S.; Bachmatiuk, A.; Rümmeli, M. H.; Hyun, S.; Lee, H.-J., Observation of Electrochemically Driven Elemental Segregation in a Si Alloy Thin-Film Anode and its Effects on Cyclic Stability for Li-Ion Batteries. Adv. Energy Mater. 2015, 5 (22), 1501136. 36. Papageorgiou, S. K.; Kouvelos, E. P.; Favvas, E. P.; Sapalidis, A. A.; Romanos, G. E.; Katsaros, F. K. J. C. r., Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. 2010, 345 (4), 469-473. 37. Chen, S.; Bao, P.; Huang, X.; Sun, B.; Wang, G. J. N. R., Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. 2014, 7 (1), 85-94. 38. Wu, L.; Yang, J.; Zhou, X.; Zhang, M.; Ren, Y.; Nie, Y., Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries. Journal of Materials Chemistry A 2016, 4 (29), 11381-11387. 39. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y., Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS Nano 2012, 6 (2), 1522-1531. 40. Chen, S.; Shen, L.; Aken, P. A. v.; Maier, J.; Yu, Y., Dual‐Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium‐Ion Batteries. Advanced Materials 2017, 29 (21). 41. Li, J.; Dahn, J. J. J. o. T. E. S., An in situ X-ray diffraction study of the reaction of Li with crystalline Si. 2007, 154 (3), A156-A161 1. Johnson, B. A.; White, R. E., Characterization of commercially available lithium-ion batteries. J. Power Sources 1998, 70 (1), 48-54. 2. Nitta, N.; Yushin, G., High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles. 2014, 31 (3), 317-336. 3. Hayner, C. M.; Zhao, X.; Kung, H. H., Materials for Rechargeable Lithium-Ion Batteries. 2012, 3 (1), 445-471. 4. Zhang, W.-J., Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196 (3), 877-885. 5. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359. 6. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262. 7. Wu, H.; Cui, Y., Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7 (5), 414-429. 8. Delong, M.; Zhanyi, C.; Anming, H., Si-Based Anode Materials for Li-ion Batteries: A Mini Review. Nano-Micro Letters 2014, 6 (4). 9. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology 2007, 3, 31. 10. Chan, C. K.; Ruffo, R.; Hong, S. S.; Cui, Y., Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 2009, 189 (2), 1132-1140. 11. Ge, M.; Rong, J.; Fang, X.; Zhou, C., Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life. Nano Letters 2012, 12 (5), 2318-2323. 12. Cui, L.-F.; Yang, Y.; Hsu, C.-M.; Cui, Y., Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Letters 2009, 9 (9), 3370-3374. 13. Cui, L.-F.; Ruffo, R.; Chan, C. K.; Peng, H.; Cui, Y., Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Letters 2009, 9 (1), 491-495. 14. Hwang, T. H.; Lee, Y. M.; Kong, B.-S.; Seo, J.-S.; Choi, J. W., Electrospun Core–Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes. Nano Letters 2012, 12 (2), 802-807. 15. Li, X.; Meduri, P.; Chen, X.; Qi, W.; Engelhard, M. H.; Xu, W.; Ding, F.; Xiao, J.; Wang, W.; Wang, C.; Zhang, J.-G.; Liu, J., Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. Journal of Materials Chemistry 2012, 22 (22), 11014-11017. 16. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y., Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life. Nano Letters 2011, 11 (7), 2949-2954. 17. Liu, N.; Lu, Z.; Zhao, J.; McDowell, M. T.; Lee, H.-W.; Zhao, W.; Cui, Y., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotechnology 2014, 9, 187. 18. Yang, J.; Wang, Y.-X.; Chou, S.-L.; Zhang, R.; Xu, Y.; Fan, J.; Zhang, W.-x.; Kun Liu, H.; Zhao, D.; Xue Dou, S., Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 2015, 18, 133-142. 19. Yang, L. Y.; Li, H. Z.; Liu, J.; Sun, Z. Q.; Tang, S. S.; Lei, M., Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Scientific Reports 2015, 5, 10908. 20. Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G., Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. ACS Applied Materials & Interfaces 2010, 2 (11), 3004-3010. 21. Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. J. S., A major constituent of brown algae for use in high-capacity Li-ion batteries. 2011, 1209150. 22. Cai, J.-J.; Zuo, P.-J.; Cheng, X.-Q.; Xu, Y.-H.; Yin, G.-P. J. E. C., Nano-silicon/polyaniline composite for lithium storage. 2010, 12 (11), 1572-1575. 23. Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde‐Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W. J. A. M., Polymers with tailored electronic structure for high capacity lithium battery electrodes. 2011, 23 (40), 4679-4683. 24. Liu, D.; Zhao, Y.; Tan, R.; Tian, L.-L.; Liu, Y.; Chen, H.; Pan, F., Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy 2017, 36, 206-212. 25. Klavetter, K. C.; Wood, S. M.; Lin, Y.-M.; Snider, J. L.; Davy, N. C.; Chockla, A. M.; Romanovicz, D. K.; Korgel, B. A.; Lee, J.-W.; Heller, A.; Mullins, C. B., A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life. J. Power Sources 2013, 238, 123-136. 26. Chockla, A. M.; Bogart, T. D.; Hessel, C. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries. J. Phys. Chem. C 2012, 116 (34), 18079-18086. 27. Yu, D. Y. W.; Hoster, H. E.; Batabyal, S. K., Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Sci. Rep. 2014, 4, 4562. 28. Nguyen, D.-T.; Kang, J.; Nam, K.-M.; Paik, Y.; Song, S.-W., Understanding interfacial chemistry and stability for performance improvement and fade of high-energy Li-ion battery of LiNi0.5Co0.2Mn0.3O2//silicon-graphite. J. Power Sources 2016, 303, 150-158. 29. Youn, D. H.; Patterson, N. A.; Park, H.; Heller, A.; Mullins, C. B., Facile Synthesis of Ge/N-Doped Carbon Spheres with Varying Nitrogen Content for Lithium Ion Battery Anodes. ACS Applied Materials & Interfaces 2016, 8 (41), 27788-27794. 30. Oh, M.; Na, S.; Woo, C.-S.; Jeong, J.-H.; Kim, S.-S.; Bachmatiuk, A.; Rümmeli, M. H.; Hyun, S.; Lee, H.-J., Observation of Electrochemically Driven Elemental Segregation in a Si Alloy Thin-Film Anode and its Effects on Cyclic Stability for Li-Ion Batteries. Adv. Energy Mater. 2015, 5 (22), 1501136. 31. Papageorgiou, S. K.; Kouvelos, E. P.; Favvas, E. P.; Sapalidis, A. A.; Romanos, G. E.; Katsaros, F. K. J. C. r., Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. 2010, 345 (4), 469-473. 32. Chen, S.; Bao, P.; Huang, X.; Sun, B.; Wang, G. J. N. R., Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. 2014, 7 (1), 85-94. 33. Wu, L.; Yang, J.; Zhou, X.; Zhang, M.; Ren, Y.; Nie, Y., Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries. Journal of Materials Chemistry A 2016, 4 (29), 11381-11387. 34. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y., Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS Nano 2012, 6 (2), 1522-1531. 35. Chen, S.; Shen, L.; Aken, P. A. v.; Maier, J.; Yu, Y., Dual‐Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium‐Ion Batteries. Advanced Materials 2017, 29 (21). 36. Li, J.; Dahn, J. J. J. o. T. E. S., An in situ X-ray diffraction study of the reaction of Li with crystalline Si. 2007, 154 (3), A156-A161. 37. De las Casas, C.; Li, W., A review of application of carbon nanotubes for lithium ion battery anode material. Journal of Power Sources 2012, 208, 74-85. 38. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials today 2015, 18 (5), 252-264. 39. Goodenough, J. B.; Park, K.-S., The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-1176. 40. Goodenough, J. B., Evolution of strategies for modern rechargeable batteries. Accounts of chemical research 2012, 46 (5), 1053-1061. 41. Wang, X.; Sone, Y.; Segami, G.; Naito, H.; Yamada, C.; Kibe, K., Understanding volume change in lithium-ion cells during charging and discharging using in situ measurements. Journal of The Electrochemical Society 2007, 154 (1), A14-A21. 42. Verma, P.; Maire, P.; Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341. 43. Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H., A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid state ionics 2002, 148 (3-4), 405-416. 44. Nie, M.; Chalasani, D.; Abraham, D. P.; Chen, Y.; Bose, A.; Lucht, B. L., Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. The Journal of Physical Chemistry C 2013, 117 (3), 1257-1267. 45. Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. Journal of power sources 1997, 68 (2), 320-325. 46. Chen, Y.; Devine, T. M.; Evans, J. W.; Monteiro, O. R.; Brown, I. G., Examination of the corrosion behavior of aluminum current collectors in lithium/polymer batteries. Journal of The Electrochemical Society 1999, 146 (4), 1310-1317. 47. Zhang, X.; Winget, B.; Doeff, M.; Evans, J. W.; Devine, T. M., Corrosion of aluminum current collectors in lithium-ion batteries with electrolytes containing LiPF6. Journal of The Electrochemical Society 2005, 152 (11), B448-B454. 48. Yang, H.; Kwon, K.; Devine, T. M.; Evans, J. W., Aluminum corrosion in lithium batteries an investigation using the electrochemical quartz crystal microbalance. Journal of The Electrochemical Society 2000, 147 (12), 4399-4407. 49. Wang, X.; Yasukawa, E.; Mori, S., Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes. Electrochimica Acta 2000, 45 (17), 2677-2684. 50. Yamada, Y.; Chiang, C. H.; Sodeyama, K.; Wang, J.; Tateyama, Y.; Yamada, A., Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes. ChemElectroChem 2015, 2 (11), 1687-1694. 51. Zhang, S.; Jow, T., Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources 2002, 109 (2), 458-464. 52. Hyams, T. C.; Go, J.; Devine, T. M., Corrosion of aluminum current collectors in high-power lithium-ion batteries for use in hybrid electric vehicles. Journal of The Electrochemical Society 2007, 154 (8), C390-C396. 53. Nakanishi, S.; Suzuki, T.; Qi, C.; Akikusa, J.; Nakamura, K., Effect of surface treatment for aluminum foils on discharge properties of lithium-ion battery. Transactions of Nonferrous Metals Society of China 2014, 24 (7), 2314-2319. 54. Wang, M.; Tang, M.; Chen, S.; Ci, H.; Wang, K.; Shi, L.; Lin, L.; Ren, H.; Shan, J.; Gao, P., Graphene‐Armored Aluminum Foil with Enhanced Anticorrosion Performance as Current Collectors for Lithium‐Ion Battery. Advanced Materials 2017, 29 (47), 1703882. 55. Jiang, J.; Nie, P.; Ding, B.; Wu, W.; Chang, Z.; Wu, Y.; Dou, H.; Zhang, X., Effect of graphene modified Cu current collector on the performance of Li4Ti5O12 anode for lithium-ion batteries. ACS applied materials & interfaces 2016, 8 (45), 30926-30932. 56. Liu, X.; Wang, D.; Zhang, B.; Luan, C.; Qin, T.; Zhang, W.; Wang, D.; Shi, X.; Deng, T.; Zheng, W., Vertical graphene nanowalls coating of copper current collector for enhancing rate performance of graphite anode of Li ion battery: The merit of optimized interface architecture. Electrochimica Acta 2018, 268, 234-240.
|