帳號:guest(3.137.223.190)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝承廷
作者(外文):Hsieh, Cheng-Ting
論文名稱(中文):以特殊合金奈米材料做為高效穩定之電解水觸媒
論文名稱(外文):Nanostructered Alloys as High Performance Electrocatalysts for Water Splitting
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):衛子健
蔡德豪
口試委員(外文):Wei, Tzu-Chien
Tsai, De-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032561
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:106
中文關鍵詞:電解水奈米線反蛋白石結構泡沫鎳
外文關鍵詞:Water SplittingNanowireInverse-opal StructureNickel Foam
相關次數:
  • 推薦推薦:0
  • 點閱點閱:340
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著能源耗竭與環境保護議題逐漸受到人們的重視,發展乾淨的替代性能源為當前亟需加速研究之目標。電解水產氫被視為下一個世代潔淨且高純度之綠色能量來源,也因此,開發長壽高效穩定之電化學觸媒在整個領域中扮演相當重要的角色。目前為止,白金被視為最優異之產氫觸媒材料,而二氧化銥與二氧化釕為表現最佳之產氧觸媒材料。然而,這些金屬因地殼蘊藏量稀少且價格昂貴,在商業能源發展上受到極大的限制。所以,目前研究無不希望找尋價廉穩定高效之電觸媒為實現綠色能源之應用。
在已知材料當中,鐵鈷鎳銅鉬等過渡金屬與其衍生物被視為最有潛力之催化元素,因其電子價態性質與價格低廉之優勢,在許多電化學觸媒領域被廣泛的使用。在奈米材料製備方面,金屬奈米線陣列和反蛋白石奈米結構因其規則有序且具高比表面積之特性、孔洞易於氣體氣泡之排除、且利於加速電子傳遞速率,適合用於電解水電極之開發。因此,綜合以上討論,本篇研究分別以商用多孔陽極氧化鋁薄膜和聚苯乙烯奈米球為模板,成功合成鎳鐵核/硫化鎳鐵殼奈米線陣列和鎳鐵鉬合金反蛋白石結構於泡沫鎳上,並將兩奈米材料用於電解水產氫之催化應用上。
在電化學表現方面,以1M氫氧化鉀作為電解質,鎳鐵核/硫化鎳鐵殼奈米線陣列在陽極產氧端表現優異,並提供電觸媒材料設計一個新的發展基礎。另一方面,鎳鐵鉬合金反蛋白石結構成長於泡沫鎳上,用作產氫產氧雙效觸媒表現突出,為已知雙效電解水觸媒當中,高電流條件下表現最佳之材料。並在長時間嚴苛條件操作下,仍能保持其催化活性。所有測試無不顯示本研究開發之兩觸媒材料具備優異之電催化性質,並期待在未來商業能源電解水產氫發展中展現其潛力,以體現最終潔淨能源之目標。
Because of elevating energy demand and worsening environmental pollution, development of clean alternative energies has become the top priority of scientific research efforts. Hydrogen production from renewable energy driven electrolytic water splitting is considered a promising technology for supply of clean alternative energy. Among other things, development of stable and efficient catalysts for electrolytic water splitting has drawn extensive and intensive research attention. Platinum is reported to be the most efficient catalyst for hydrogen evolution reactions (HER), whereas iridium oxide is regarded as a benchmarking catalyst for oxygen evolution reactions (OER). Nevertheless, because of the scarcity and extremely high cost of Pt and Ir, it is not promising for them to realize large scale commercial applications. Therefore, developing efficient, stable, and non-precious metal-based catalysts is urgently needed.
Transition metals, including iron, cobalt, nickel, copper, and molybdenum, and their derivatives are viewed as promising catalyst materials and have been intensively investigated for electrolytic water splitting. On the other hand, metal nanowire arrays and metal inverse-opal structure have caught a lot of research attention because of their ordered structure and high surface areas for targeted reactions. These advantageous characteristics significantly enhance the relevant electrochemical performances because of the enhanced charge transport path and bubble escape. With all the factors mentioned above, core/shell NiFe/sulfurized NiFe (NiFe/S-NiFe) nanowire arrays and NiFeMo inverse-opal structure on nickel foam have been successfully fabricated with anodic aluminum oxide membranes (AAO) and self-assembled polystyrene (PS) spheres on nickel foam backbone surfaces as the templates, respectively.
In terms of the electrocatalytic performances, NiFe/S-NiFe nanowire arrays show outstanding potentials for oxygen evolution reactions. On the other hand, NiFeMo inverse-opal structure on nickel foam shows excellent bifuctional electrcatalytic performance. It outperforms most of the bifuctional catalysts for overall water splitting at high current densities. Notably, the two catalysts developed here exhibit excellent durability. The present development proves to be a promising new catalyst architecture design for electrocatalytic processes.
摘要 I
致謝 IV
總目錄 V
圖目錄 VIII
表目錄 XII
第一章緒論 1
1.1 前言 1
1.2 電催化分解水反應機制 1
1.3 反應之過電位 4
1.4電化學三極式量測裝置 5
1.4.1參考電極 5
1.4.2對電極 6
1.5常見的OER與HER觸媒 7
1.5.1鎳鐵金屬材料 7
1.5.2金屬硫化物 8
1.5.3鉬金屬與其衍生物 9
1.6 以AAO為模板生成之金屬奈米線 9
1.7 商用泡沫鎳於電解水領域之應用 10
1.8 以聚苯乙烯奈米球為模板生成之反蛋白石結構 10
1.9 研究動機 11
第二章文獻回顧 13
2.1 鎳鐵金屬與其硫化物於OER之應用 13
2.1.1 鎳鐵金屬於OER之應用 13
2.1.2金屬硫化物於OER之應用 17
2.2鎳鐵金屬與其硫化物於HER之應用 19
2.3 鉬金屬與其衍生物用於HER及OER之應用 21
2.4 以AAO為模板基礎電鍍合成鎳鐵金屬奈米線 25
2.5 以聚苯乙烯奈米球為模板合成反蛋白石結構用於電解水觸媒 27
第三章實驗方法 29
3.1 實驗藥品 29
3.2 實驗器材 31
3.3 材料分析儀器 31
3.4 實驗方法與步驟 33
3.4.1 鎳鐵合金奈米線陣列製作 33
3.4.2 硫化鎳鐵合金奈米線陣列 34
3.4.3 鎳鐵鉬合金反蛋白石結構成長於泡沫鎳骨幹 35
3.5 電化學性質量測 36
3.5.1 HER和OER過電位之量測 37
3.5.2 電化學阻抗頻譜分析法(EIS) 37
3.5.3 全電極系統電化學量測(Full Cell Measurement) 38
3.5.4 長效性測試(Long-term Stability Test) 38
第四章結果與討論 40
4.1 鎳鐵核/硫化鎳鐵殼奈米線陣列之材料分析 40
4.1.1 鎳鐵合金奈米線陣列 40
4.1.2 鎳鐵核/硫化鎳鐵殼奈米線陣列 45
4.2 鎳鐵核/硫化鎳鐵殼奈米線陣列之電化學性質分析 53
4.2.1 奈米線陣列OER之電化學表現 53
4.2.2 奈米線陣列HER之電化學表現 57
4.2.3 奈米線陣列組成全電解水系統之電化學表現 60
4.3 鎳鐵核/硫化鎳鐵殼奈米線陣列與其他文獻活性表現整理 65
4.4 鎳鐵鉬合金反蛋白石結構成長於泡沫鎳之材料分析 68
4.5 鎳鐵鉬合金反蛋白石結構成長於泡沫鎳之電化學性質分析 74
4.5.1 鎳鐵鉬合金反蛋白石結構OER之電化學表現 75
4.5.2 鎳鐵鉬合金反蛋白石結構HER之電化學表現 81
4.5.3 鎳鐵鉬合金反蛋白石結構組成全電解水系統之電化學表現 86
4.6 鎳鐵鉬合金反蛋白石結構成長於泡沫鎳與其它文獻活性表現整理 94
第五章結論 96
參考文獻 97
[1] S.J. Davis, K. Caldeira, H.D. Matthews, Future CO2 Emissions and Climate Change from Existing Energy Infrastructure, Science, 329 (2010) 1330-1333.
[2] N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives, Chemical Society Reviews, 46 (2017) 337-365.
[3] J.A. Turner, A Realizable Renewable Energy Future, Science, 285 (1999) 687-689.
[4] J. Potocnik, Renewable Energy Sources and the Realities of Setting an Energy Agenda, Science, 315 (2007) 810-811.
[5] P.P. Edwards, V.L. Kuznetsov, W.I.F. David, Hydrogen Energy, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365 (2007) 1043-1056.
[6] S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S.H. Liu, C.P. Teng, M.Y. Han, Recent Progress in Energy-Driven Water Splitting, Adv. Sci., 4 (2017) 24.
[7] E. Skúlason, V. Tripkovic, M.E. Björketun, S. Gudmundsdóttir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Jónsson, J.K. Nørskov, Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations, The Journal of Physical Chemistry C, 114 (2010) 18182-18197.
[8] S.A. Vilekar, I. Fishtik, R. Datta, Kinetics of the Hydrogen Electrode Reaction, J. Electrochem. Soc., 157 (2010) B1040-B1050.
[9] A.R. Kucernak, C. Zalitis, General Models for the Electrochemical Hydrogen Oxidation and Hydrogen Evolution Reactions: Theoretical Derivation and Experimental Results Under Near Mass-Transport Free Conditions, the Journal of Physical Chemistry C, 120 (2016) 10721-10745.
[10] W.C. Sheng, H.A. Gasteiger, Y. Shao-Horn, Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes, J. Electrochem. Soc., 157 (2010) B1529-B1536.
[11] M. Tahir, L. Pan, F. Idrees, X.W. Zhang, L. Wang, J.J. Zou, Z.L. Wang, Electrocatalytic Oxygen Evolution Reaction for Energy Conversion and Storage: A Comprehensive Review, Nano Energy, 37 (2017) 136-157.
[12] 胡啟章, 電化學原理與方法(二版), 2 Ed., 五南, 台北市, 2011.
[13] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley2000.
[14] R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N.M. Markovic, Trends In Activity For the Water Electrolyser Reactions on 3d M(Ni,Co,Fe,Mn) Hydr(Oxy)Oxide Catalysts, Nat. Mater., 11 (2012) 550-557.
[15] Y. Yan, B.Y. Xia, B. Zhao, X. Wang, A Review on Noble-Metal-Free Bifunctional Heterogeneous Catalysts for Overall Electrochemical Water Splitting, J. Mater. Chem. A, 4 (2016) 17587-17603.
[16] H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu, Transition Metal (Fe, Co, Ni, and Mn) Oxides for Oxygen Reduction and Evolution Bifunctional Catalysts in Alkaline Media, Nano Today, 11 (2016) 601-625.
[17] L. Han, S.J. Dong, E.K. Wang, Transition-Metal (Co, Ni, and Fe)-based Electrocatalysts for the Water Oxidation Reaction, Adv. Mater., 28 (2016) 9266-9291.
[18] Y. Qu, H. Medina, S.-W. Wang, Y.-C. Wang, C.-W. Chen, T.-Y. Su, A. Manikandan, K. Wang, Y.-C. Shih, J.-W. Chang, H.-C. Kuo, C.-Y. Lee, S.-Y. Lu, G. Shen, Z.M. Wang, Y.-L. Chueh, Wafer Scale Phase-Engineered 1T- and 2H-MoSe2/Mo Core–Shell 3D-Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction, Advanced Materials, 28 (2016) 9831-9838.
[19] P. Li, H.C. Zeng, Bimetallic Ni-Fe Phosphide Nanocomposites With a Controlled Architecture and Composition Enabling Highly Efficient Electrochemical Water Oxidation, Journal of Materials Chemistry A, 6 (2018) 2231-2238.
[20] Y. Jin, S. Huang, X. Yue, H. Du, P.K. Shen, Mo- and Fe-Modified Ni(OH)2/NiOOH Nanosheets as Highly Active and Stable Electrocatalysts for Oxygen Evolution Reaction, ACS Catal., 8 (2018) 2359-2363.
[21] B.C. Qiu, L.J. Cai, Y. Wang, Z.Y. Lin, Y.P. Zuo, M.Y. Wang, Y. Chai, Fabrication of Nickel-Cobalt Bimetal Phosphide Nanocages for Enhanced Oxygen Evolution Catalysis, Advanced Functional Materials, 28 (2018).
[22] W.X. Zhu, X.Y. Yue, W.T. Zhang, S.X. Yu, Y.H. Zhang, J. Wang, J.L. Wang, Nickel Sulfide Microsphere Film on Ni Foam as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting, Chemical Communications, 52 (2016) 1486-1489.
[23] C. Chang, L. Zhang, C.-W. Hsu, X.-F. Chuah, S.-Y. Lu, Mixed NiO/NiCo2O4 Nanocrystals Grown From the Skeleton of a 3D Porous Nickel Network as Efficient Electrocatalysts for Oxygen Evolution Reactions, ACS Applied Materials & Interfaces, 10 (2018) 417-426.
[24] C.Z. Yuan, Z.T. Sun, Y.F. Jiang, Z.K. Yang, N. Jiang, Z.W. Zhao, U.Y. Qazi, W.H. Zhang, A.W. Xu, One-Step in Situ Growth of Iron-Nickel Sulfide Nanosheets on FeNi Alloy Foils: High-Performance and Self-Supported Electrodes for Water Oxidation, Small, 13 (2017) 8.
[25] G. Zhang, Y.S. Feng, W.T. Lu, D. He, C.Y. Wang, Y.K. Li, X.Y. Wang, F.F. Cao, Enhanced Catalysis of Electrochemical Overall Water Splitting In Alkaline Media by Fe Doping in Ni3S2 Nanosheet Arrays, ACS Catal., 8 (2018) 5431-5441.
[26] P.W. Cai, J.H. Huang, J.X. Chen, Z.H. Wen, Oxygen-Containing Amorphous Cobalt Sulfide Porous Nanocubes as High-Activity Electrocatalysts for the Oxygen Evolution Reaction in An Alkaline/Neutral Medium, Angewandte Chemie-International Edition, 56 (2017) 4858-4861.
[27] M. Jahan, Z.L. Liu, K.P. Loh, A Graphene Oxide and Copper-Centered Metal Organic Framework Composite As A Tri-Functional Catalyst for HER, OER, and ORR, Advanced Functional Materials, 23 (2013) 5363-5372.
[28] D. Senthil Raja, X.-F. Chuah, S.-Y. Lu, In Situ Grown Bimetallic MOF-Based Composite as Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting with Ultrastability at High Current Densities, Adv. Energy Mater., 8 (2018) 1801065.
[29] J. Zhou, Y.B. Dou, A. Zhou, L. Shu, Y. Chen, J.R. Li, Layered Metal-Organic Framework-Derived Metal Oxide/Carbon Nanosheet Arrays for Catalyzing the Oxygen Evolution Reaction, Acs Energy Letters, 3 (2018) 1655-1661.
[30] M.H. Yu, S.B.B. Zhao, H.B.B. Feng, L. Hu, X.Y. Zhang, Y.X. Zeng, Y.X. Tong, X.H. Lu, Engineering Thin MoS2 Nanosheets on Tin Nanorods: Advanced Electrochemical Capacitor Electrode and Hydrogen Evolution Electrocatalyst, Acs Energy Letters, 2 (2017) 1862-1868.
[31] E.J. Popczun, J.R. Mckone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured Nickel Phosphide Aas An Electrocatalyst for the Hydrogen Evolution Reaction, Journal of the American Chemical Society, 135 (2013) 9267-9270.
[32] X. Long, G. Li, Z. Wang, H. Zhu, T. Zhang, S. Xiao, W. Guo, S. Yang, Metallic Iron–Nickel Sulfide Ultrathin Nanosheets as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media, Journal of the American Chemical Society, 137 (2015) 11900-11903.
[33] J. Tian, Q. Liu, N. Cheng, A.M. Asiri, X. Sun, Self-Supported Cu3P Nanowire Arrays as an Integrated High-Performance Three-Dimensional Cathode for Generating Hydrogen From Water, Angewandte Chemie International Edition, 53 (2014) 9577-9581.
[34] Z.C. Wu, Z.X. Zou, J.S. Huang, F. Gao, Fe-Doped NiO Mesoporous Nanosheets Array for Highly Efficient Overall Water Splitting, Journal of Catalysis, 358 (2018) 243-252.
[35] L.X. Wang, Y. Li, M.R. Xia, Z.P. Li, Z.H. Chen, Z.P. Ma, X.J. Qin, G.J. Shao, Ni Nanoparticles Supported on Graphene Layers: An Excellent 3D Electrode for Hydrogen Evolution Reaction in Alkaline Solution, Journal of Power Sources, 347 (2017) 220-228.
[36] L.X. Guo, J.Y. Wang, X. Teng, Y.Y. Liu, X.M. He, Z.F. Chen, A Novel Bimetallic Nickel-Molybdenum Carbide Nanowire Array for Efficient Hydrogen Evolution, Chemsuschem, 11 (2018) 2717-2723.
[37] C.Q. Dong, T.Y. Kou, H. Gao, Z.Q. Peng, Z.H. Zhang, Eutectic-Derived Mesoporous Ni-Fe-O Nanowire Network Catalyzing Oxygen Evolution and Overall Water Splitting, Advanced Energy Materials, 8 (2018).
[38] R.L. Tichenor, Nickel Oxides-Relation Between Electrochemical and Foreign Ion Content, Industrial & Engineering Chemistry, 44 (1952) 973-977.
[39] M.W. Louie, A.T. Bell, An Investigation of Thin-Film Ni-Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen, Journal of the American Chemical Society, 135 (2013) 12329-12337.
[40] D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, M.J. Cheng, D. Sokaras, T.C. Weng, R. Alonso-Mori, R.C. Davis, J.R. Bargar, J.K. Norskov, A. Nilsson, A.T. Bell, Identification of Highly Active Fesurface site
s in (Ni,Fe)OOH for Electrocatalytic Water Splitting, Journal of the American Chemical Society, 137 (2015) 1305-1313.
[41] M. Gong, H.J. Dai, A Mini Review of NiFe-Based Materials as Highly Active Oxygen Evolution Reaction Electrocatalysts, Nano Res., 8 (2015) 23-39.
[42] T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds, Chemical Reviews, 110 (2010) 6474-6502.
[43] S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent Trends and Perspectives in Electrochemical Water Splitting With an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review, ACS Catal., 6 (2016) 8069-8097.
[44] M.Y. Gao, J.R. Zeng, Q.B. Zhang, C. Yang, X.T. Li, Y.X. Hua, C.Y. Xu, Scalable One-Step Electrochemical Deposition of Nanoporous Amorphous S-Doped NiFe2O4/Ni3Fe Composite Films As Highly Efficient Electrocatalysts for Oxygen Evolution With Ultrahigh Stability, Journal of Materials Chemistry A, 6 (2018) 1551-1560.
[45] Y. Jin, X. Yue, H. Du, K. Wang, S. Huang, P.K. Shen, One-Step Growth of Nitrogen-Decorated Iron–Nickel Sulfide Nanosheets for the Oxygen Evolution Reaction, Journal of Materials Chemistry A, 6 (2018) 5592-5597.
[46] B.Q. Li, S.Y. Zhang, C. Tang, X.Y. Cui, Q. Zhang, Anionic Regulated NiFe (Oxy)Sulfide Electrocatalysts for Water Oxidation, Small, 13 (2017) 6.
[47] P. Luo, H.J. Zhang, L. Liu, Y. Zhang, J. Deng, C.H. Xu, N. Hu, Y. Wang, Targeted Synthesis of Unique Nickel Sulfide (NiS, NiS2) Microarchitectures and the Applications for the Enhanced Water Splitting System, Acs Applied Materials & Interfaces, 9 (2017) 2500-2508.
[48] X.X. Zhao, J.R. Feng, J. Liu, W. Shi, G.M. Yang, G.C. Wang, P. Cheng, An Efficient, Visible-Light-Driven, Hydrogen Evolution Catalyst NiS/ZnxCd1-XS Nanocrystal Derived from a Metal-Organic Framework, Angewandte Chemie-International Edition, 57 (2018) 9790-9794.
[49] T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of Active Edge Sites for Electrochemical H2 Evolution From MoS2 Nanocatalysts, Science, 317 (2007) 100-102.
[50] C. Di Giovanni, W.-A. Wang, S. Nowak, J.-M. Grenèche, H. Lecoq, L. Mouton, M. Giraud, C. Tard, Bioinspired Iron Sulfide Nanoparticles for Cheap and Long-Lived Electrocatalytic Molecular Hydrogen Evolution in Neutral Water, ACS Catal., 4 (2014) 681-687.
[51] J.S. Chen, J.W. Ren, M. Shalom, T. Fellinger, M. Antoniettit, Stainless Steel Mesh-Supported NiS Nanosheet Array as Highly Efficient Catalyst for Oxygen Evolution Reaction, ACS Applied Materials & Interfaces, 8 (2016) 5509-5516.
[52] C.Z. Yuan, Z.T. Sun, Y.F. Jiang, Z.K. Yang, N. Jiang, Z.W. Zhao, U.Y. Qazi, W.H. Zhang, A.W. Xu, One-Step in Situ Growth of Iron-Nickel Sulfide Nanosheets on FeNi Alloy Foils: High-Performance and Self-Supported Electrodes for Water Oxidation, Small, 13 (2017).
[53] J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng, Efficient Hydrogen Production on MoNi4 Electrocatalysts With Fast Water Dissociation Kinetics, Nature Communications, 8 (2017) 15437.
[54] M.A.R. Anjum, H.Y. Jeong, M.H. Lee, H.S. Shin, J.S. Lee, Efficient Hydrogen Evolution Reaction Catalysis in Alkaline Media by All-In-One MoS2 with Multifunctional Active Sites, Advanced Materials, 30 (2018) 1707105.
[55] W. Chen, J. Pei, C.-T. He, J. Wan, H. Ren, Y. Zhu, Y. Wang, J. Dong, S. Tian, W.-C. Cheong, S. Lu, L. Zheng, X. Zheng, W. Yan, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Rational Design of Single Molybdenum Atoms Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction, Angewandte Chemie International Edition, 56 (2017) 16086-16090.
[56] Y. Jin, H. Wang, J. Li, X. Yue, Y. Han, P.K. Shen, Y. Cui, Porous Moo2 Nanosheets As Non-Noble Bifunctional Electrocatalysts for Overall Water Splitting, Advanced Materials, 28 (2016) 3785-3790.
[57] Z. Yin, Y. Sun, C. Zhu, C. Li, X. Zhang, Y. Chen, Bimetallic Ni–Mo Nitride Nanotubes as Highly Active and Stable Bifunctional Electrocatalysts for Full Water Splitting, J. Mater. Chem. A, 5 (2017) 13648-13658.
[58] D. Das, S. Santra, K.K. Nanda, In Situ Fabrication of A Nickel/Molybdenum Carbide-Anchored N-Doped Graphene/CNT Hybrid: An Efficient (Pre)Catalyst for OER and HER, ACS Applied Materials & Interfaces, 10 (2018) 35025-35038.
[59] D.C. Leitao, J. Ventura, J.M. Teixeira, C.T. Sousa, S. Pinto, J.B. Sousa, J.M. Michalik, J.M. De Teresa, M. Vazquez, J.P. Araujo, Correlations Among Magnetic, Electrical and Magneto-Transport Properties of NiFe Nanohole Arrays, Journal of Physics-Condensed Matter, 25 (2013).
[60] Y.G. Guo, L.J. Wan, C.F. Zhu, D.L. Yang, D.M. Chen, C.L. Bai, Ordered Ni-Cu Nanowire Array with Enhanced Coercivity, Chem. Mat., 15 (2003) 664-667.
[61] C.-Y. Kuo, S.-Y. Lu, Opaline Metallic Photonic Crystals Possessing Complete Photonic Band Gaps in Optical Regime, Applied Physics Letters, 92 (2008) 121919.
[62] J.-H. Kim, S.H. Kang, K. Zhu, J.Y. Kim, N.R. Neale, A.J. Frank, Ni–NiO Core–Shell Inverse Opal Electrodes for Supercapacitors, Chemical Communications, 47 (2011) 5214-5216.
[63] D.Y. Kim, J. Suk, D.W. Kim, Y. Kang, S.H. Im, Y. Yang, O.O. Park, An Electrochemically Grown Three-Dimensional Porous Si@Ni Inverse Opal Structure for High-Performance Li Ion Battery Anodes, J. Mater. Chem. A, 2 (2014) 6396-6401.
[64] O. Dragos, H. Chiriac, N. Lupu, M. Grigoras, I. Tabakovic, Anomalous Codeposition of fcc NiFe Nanowires With 5-55% Fe and Their Morphology, Crystal Structure and Magnetic Properties, J. Electrochem. Soc., 163 (2016) D83-D94.
[65] W. Lee, S.-J. Park, Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures, Chemical Reviews, 114 (2014) 7487-7556.
[66] N.K. Chaudhari, H. Jin, B. Kim, K. Lee, Nanostructured Materials on 3D Nickel Foam as Electrocatalysts for Water Splitting, Nanoscale, 9 (2017) 12231-12247.
[67] Z. Zhang, X. Liu, X. Qi, Z. Huang, L. Ren, J. Zhong, Hydrothermal Synthesis of Ni3S2/Graphene Electrode and Its Application in a Supercapacitor, 2014.
[68] J.S. Lee, S.I. Kim, J.C. Yoon, J.H. Jang, Chemical Vapor Deposition of Mesoporous Graphene Nanoballs for Supercapacitor, ACS Nano, 7 (2013) 6047-6055.
[69] P.B. Liu, M.Y. Yang, S.H. Zhou, Y. Huang, Y.D. Zhu, Hierarchical Shell-Core Structures of Concave Spherical NiO Nanospines@Carbon for High Performance Supercapacitor Electrodes, Electrochim. Acta, 294 (2019) 383-390.
[70] Q. Zhou, J. Pu, X. Sun, C. Zhu, J. Li, J. Wang, S. Chang, H. Zhang, In Situ Surface Engineering of Nickel Inverse Opal for Enhanced Overall Electrocatalytic Water Splitting, J. Mater. Chem. A, 5 (2017) 14873-14880.
[71] H. Song, S. Oh, H. Yoon, K.-H. Kim, S. Ryu, J. Oh, Bifunctional NiFe Inverse Opal Electrocatalysts with Heterojunction Si Solar Cells for 9.54%-Efficient Unassisted Solar Water Splitting, Nano Energy, 42 (2017) 1-7.
[72] M.L. Juan, R. Gordon, Y.J. Pang, F. Eftekhari, R. Quidant, Self-Induced Back-Action Optical Trapping of Dielectric Nanoparticles, Nat. Phys., 5 (2009) 915-919.
[73] L. Yu, Z.Y. Yan, H.C. Yang, X.Z. Chai, B.Q. Li, S. Moeendarbari, Y.W. Hao, D. Zhang, G. Feng, P. Han, D.A. Gilbert, K. Liu, K.S. Buchanan, X.M. Cheng, Magnetization Reversal of Three-Dimensional Nickel Anti-Sphere Arrays, IEEE Magn. Lett., 8 (2017) 4.
[74] A. Coll, S. Bermejo, D. Hernández, L. Castañer, Colloidal Crystals By Electrospraying Polystyrene Nanofluids, 2013.
[75] X.H. Li, J.S. Zhang, X.F. Chen, A. Fischer, A. Thomas, M. Antonietti, X.C. Wang, Condensed Graphitic Carbon Nitride Nanorods by Nanoconfinement: Promotion of Crystallinity on Photocatalytic Conversion, Chem. Mat., 23 (2011) 4344-4348.
[76] H. Zhang, J.H. Kim, J.H. Kim, J.S. Lee, Engineering Highly Ordered Iron Titanate Nanotube Array Photoanodes for Enhanced Solar Water Splitting Activity, Advanced Functional Materials, 27 (2017).
[77] T.T. Zhang, Z.U. Rahman, N. Wei, Y.P. Liu, J. Liang, D.A. Wang, In Situ Growth of Single-Crystal TiO2 Nanorod Arrays on Ti Substrate: Controllable Synthesis and Photoelectro-Chemical Water Splitting, Nano Res., 10 (2017) 1021-1032.
[78] D.K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V.K. Yachandra, D.G. Nocera, Structure–Activity Correlations in a Nickel–Borate Oxygen Evolution Catalyst, Journal of the American Chemical Society, 134 (2012) 6801-6809.
[79] J.R. Swierk, S. Klaus, L. Trotochaud, A.T. Bell, T.D. Tilley, Electrochemical Study of the Energetics of the Oxygen Evolution Reaction at Nickel Iron (Oxy)Hydroxide Catalysts, the Journal of Physical Chemistry C, 119 (2015) 19022-19029.
[80] S. Klaus, Y. Cai, M.W. Louie, L. Trotochaud, A.T. Bell, Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity, the Journal of Physical Chemistry C, 119 (2015) 7243-7254.
[81] H. Bode, K. Dehmelt, J. Witte, Zur Kenntnis Der Nickelhydroxidelektrode—I.Über Das Nickel (II)-Hydroxidhydrat, Electrochimica Acta, 11 (1966) 1079-IN1071.
[82] W. Zhou, X.-J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang, H. Zhang, Ni3S2 Nanorods/Ni Foam Composite Electrode With Low Overpotential for Electrocatalytic Oxygen Evolution, Energy & Environmental Science, 6 (2013) 2921-2924.
[83] Á. Valdés, Z.W. Qu, G.J. Kroes, J. Rossmeisl, J.K. Nørskov, Oxidation and Photo-Oxidation of Water on TiO2 Surface, the Journal of Physical Chemistry C, 112 (2008) 9872-9879.
[84] J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz, H.A. Gasteiger, New Insights Into the Electrochemical Hydrogen Oxidation and Evolution Reaction Mechanism, Energy & Environmental Science, 7 (2014) 2255-2260.
[85] V. Vij, S. Sultan, A.M. Harzandi, A. Meena, J.N. Tiwari, W.-G. Lee, T. Yoon, K.S. Kim, Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions, ACS Catal., 7 (2017) 7196-7225.
[86] Y.J. Li, H.C. Zhang, M. Jiang, Q. Zhang, P.L. He, X.M. Sun, 3D Self-Supported Fe-Doped Ni2P Nanosheet Arrays as Bifunctional Catalysts for Overall Water Splitting, Advanced Functional Materials, 27 (2017) 8.
[87] G. Zhang, J. Yuan, Y. Liu, W. Lu, N. Fu, W. Li, H. Huang, Boosting the Oxygen Evolution Reaction in Non-Precious Catalysts by Structural and Electronic Engineering, Journal of Materials Chemistry A, 6 (2018) 10253-10263.
[88] G. Zhang, Y.S. Feng, W.T. Lu, D. He, C.Y. Wang, Y.K. Li, X.Y. Wang, F.F. Cao, Enhanced Catalysis of Electrochemical Overall Water Splitting in Alkaline Media By Fe Doping in Ni3S2 Nanosheet Arrays, ACS Catal., 8 (2018) 5431.
[89] S. Piontek, C. andronescu, A. Zaichenko, B. Konkena, K. Junge Puring, B. Marler, H. Antoni, I. Sinev, M. Muhler, D. Mollenhauer, B. Roldan Cuenya, W. Schuhmann, U.-P. Apfel, Influence of the Fe:Ni Ratio and Reaction Temperature on the Efficiency of (FexNi1–X)9S8 Electrocatalysts Applied in the Hydrogen Evolution Reaction, ACS Catal., 8 (2018) 987-996.
[90] R. Abdel-Karim, Y. Reda, M. Muhammed, S. El-Raghy, M. Shoeib, H. Ahmed, Electrodeposition and Characterization of Nanocrystalline Ni-Fe Alloys, Journal of Nanomaterials, (2011).
[91] K.M. Yin, Potentiostatic Deposition Model of Iron-Nickel Alloys on the Rotating Disk Electrode in the Presence of Organic Additive, Journal of the Electrochemical Society, 144 (1997) 1560-1566.
[92] V. Torabinejad, M. Aliofkhazraei, S. Assareh, M.H. Allahyarzadeh, A.S. Rouhaghdam, Electrodeposition of Ni-Fe Alloys, Composites, and Nano Coatings–A Review, Journal of Alloys and Compounds, 691 (2017) 841-859.
[93] B. Koo, B. Yoo, Electrodeposition of Low-Stress NiFe Thin Films from a Highly Acidic Electrolyte, Surface & Coatings Technology, 205 (2010) 740-744.
[94] H. Dahms, I.M. Croll, Anomalous Codeposition of Iron-Nickel Alloys, J. Electrochem. Soc., 112 (1965) 771.
[95] A.P. Grosvenor, M.C. Biesinger, R.S. Smart, N.S. Mcintyre, New Interpretations of XPS Spectra of Nickel Metal and Oxides, Surface Science, 600 (2006) 1771-1779.
[96] A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. Mcintyre, Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds, Surface and Interface Analysis, 36 (2004) 1564-1574.
[97] Z. Cheng, H. Abernathy, M.L. Liu, Raman Spectroscopy of Nickel Sulfide Ni3S2, Journal of Physical Chemistry C, 111 (2007) 17997-18000.
[98] K.S. Joya, X. Sala, In Situ Raman and Surface-Enhanced Raman Spectroscopy on Working Electrodes: Spectroelectrochemical Characterization of Water Oxidation Electrocatalysts, Physical Chemistry Chemical Physics, 17 (2015) 21094-21103.
[99] X.Y. Yan, X.L. Tong, L. Ma, Y.M. Tian, Y.S. Cai, C.W. Gong, M.G. Zhang, L.P. Liang, Synthesis of Porous NiS Nanoflake Arrays By Ion Exchange Reaction From NiO and Their High Performance Supercapacitor Properties, Materials Letters, 124 (2014) 133-136.
[100] Z.L. Chen, R.B. Wu, Y. Liu, Y. Ha, Y.H. Guo, D.L. Sun, M. Liu, F. Fang, Ultrafine Co Nanoparticles Encapsulated in Carbon-Nanotubes-Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction, Advanced Materials, 30 (2018) 10.
[101] J.T. Ren, G.G. Yuan, C.C. Weng, L. Chen, Z.Y. Yuan, Uniquely Integrated Fe-Doped Ni(OH)2 Nanosheets for Highly Efficient Oxygen and Hydrogen Evolution Reactions, Nanoscale, 10 (2018) 10620-10628.
[102] A. Kumar, S. Bhattacharyya, Porous NiFeide Nanocubes as Bifunctional Electrocatalysts for Efficient Water-Splitting, ACSpplied Materials & Interfaces, 9 (2017) 41906-41915.
[103] L. Wang, X.L. Huang, S.S. Jiang, M. Li, K. Zhang, Y. Yan, H.P. Zhang, J.M. Xue, Increasing Gas Bubble Escape Rate for Water Splitting with Nonwoven Stainless Steel Fabrics, Acs Applied Materials & Interfaces, 9 (2017) 40281-40289.
[104] C.-T. Hsieh, X.-F. Chuah, C.-L. Huang, H.-W. Lin, Y.-A. Chen, S.-Y. Lu, NiFe/(Ni,Fe)3S2 Core/Shell Nanowire Arrays as Outstanding Catalysts for Electrolytic Water Splitting at High Current Densities, Small Methods, 0 1900234.
[105] H.Q. Fu, L. Zhang, C.W. Wang, L.R. Zheng, P.F. Liu, H.G. Yang, 1D/1D Hierarchical Nickel Sulfide/Phosphide Nanostructures for Electrocatalytic Water Oxidation, Acs Energy Letters, 3 (2018) 2021-2029.
[106] L.Y. Zeng, K.A. Sun, X.B. Wang, Y.Q. Liu, Y. Pan, Z. Liu, D.W. Cao, Y. Song, S.H. Liu, C.G. Liu, Three-Dimensional-Networked Ni2P/Ni3S2 Heteronanoflake Arrays for Highly Enhanced Electrochemical Overall-Water-Splitting Activity, Nano Energy, 51 (2018) 26-36.
[107] Y.S. Jin, X. Yue, H.Y. Du, K. Wang, S.L. Huang, P.K. Shen, one-Step Growth of Nitrogen-Decorated Iron-Nickel Sulfide Nanosheets for the Oxygen Evolution Reaction, Journal of Materials Chemistry A, 6 (2018) 5592-5597.
[108] T.A. Ho, C. Bae, H. Nam, E. Kim, S.Y. Lee, J.H. Park, H. Shin, Metallic Ni3S2 Films Grown By Atomic Layer Deposition as An Efficient and Stable Electrocatalyst for Overall Water Splitting, ACS Applied Materials & Interfaces, 10 (2018) 12807-12815.
[109] Y.Q. Yang, K. Zhang, H.L. Ling, X. Li, H.C. Chan, L.C. Yang, Q.S. Gao, MoS2-Ni3S2 Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting, ACS Catal., 7 (2017) 2357-2366.
[110] H. Li, Y. Shao, Y. Su, Y. Gao, X. Wang, Vapor-Phase Atomic Layer Deposition of Nickel Sulfide and Its Application for Efficient Oxygen-Evolution Electrocatalysis, Chem. Mat., 28 (2016) 1155-1164.
[111] S. Anantharaj, S.R. Ede, K. Karthick, S. Sam Sankar, K. Sangeetha, P.E. Karthik, S. Kundu, Precision and Correctness in the Evaluation of Electrocatalytic Water Splitting: Revisiting Activity Parameters with a Critical Assessment, Energy & Environmental Science, 11 (2018) 744-771.
[112] C. Zhu, Z. Yin, W. Lai, Y. Sun, L. Liu, X. Zhang, Y. Chen, S.-L. Chou, Fe-Ni-Mo Nitride Porous Nanotubes for Full Water Splitting and Zn-Air Batteries, Adv. Energy Mater., 8 (2018) 1802327.
[113] Y. Zhou, Z. Wang, Z. Pan, L. Liu, J. Xi, X. Luo, Y. Shen, Exceptional Performance of Hierarchical Ni–Fe (Hydr)Oxide@NiCu Electrocatalysts for Water Splitting, Advanced Materials, 31 (2019) 1806769.
[114] Z. Kang, H. Guo, J. Wu, X. Sun, Z. Zhang, Q. Liao, S. Zhang, H. Si, P. Wu, L. Wang, Y. Zhang, Engineering an Earth-Abundant Element-Based Bifunctional Electrocatalyst for Highly Efficient and Durable Overall Water Splitting, Adv. Funct. Mater., 29 (2019) 1807031.
[115] Y. Chen, C. Dong, J. Zhang, C. Zhang, Z. Zhang, Hierarchically Porous Mo-Doped Ni–Fe Oxide Nanowires Efficiently Catalyzing Oxygen/Hydrogen Evolution Reactions, J. Mater. Chem. A, 6 (2018) 8430-8440.
[116] M. Li, Y. Zhu, H. Wang, C. Wang, N. Pinna, X. Lu, Ni Strongly Coupled with Mo2C Encapsulated in Nitrogen-Doped Carbon Nanofibers as Robust Bifunctional Catalyst for Overall Water Splitting, Adv. Energy Mater., 9 (2019) 1803185.
[117] Z. Liu, H. Tan, D. Liu, X. Liu, J. Xin, J. Xie, M. Zhao, L. Song, L. Dai, H. Liu, Promotion of Overall Water Splitting Activity Over a Wide pH Range by Interfacial Electrical Effects of Metallic NiCo-Nitrides Nanoparticle/NiCo2O4 Nanoflake/Graphite Fibers, Advanced Science, 6 (2019) 1801829.
[118] Q. Liang, H. Jin, Z. Wang, Y. Xiong, S. Yuan, X. Zeng, D. He, S. Mu, Metal-Organic Frameworks Derived Reverse-Encapsulation Co-NC@Mo2C Complex for Efficient Overall Water Splitting, Nano Energy, 57 (2019) 746-752.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *