帳號:guest(3.133.109.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳佑廷
作者(外文):Chen, Yu-Ting
論文名稱(中文):利用碳酸二甲酯非光氣路徑合成1,6-己二異氰酸酯
論文名稱(外文):Synthesis of 1,6-Hexamethylene Diisocyanate by the Phosgene-free Route of Dimethyl Carbonate
指導教授(中文):汪上曉
指導教授(外文):Wong, Shan-Hill
口試委員(中文):王聖潔
王興運
口試委員(外文):Wang, San-Jang
Wang, Hsing-Yun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032557
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:54
中文關鍵詞:非光氣路徑熱裂解1,6-己二異氰酸酯溶劑
外文關鍵詞:Phosgene-free RouteThermal Decomposition1,6-Hexamethylene DiisocyanateSolvent
相關次數:
  • 推薦推薦:0
  • 點閱點閱:278
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
1,6-己二異氰酸酯(HDI)為聚氨酯(PU)的重要原料之一,目前被廣泛運用於黏著劑、塗料、絕緣體及人工橡膠、皮革的製造。傳統上,採用光氣法合成HDI,但光氣劇毒,不僅危害人體也汙染環境,過程中產生的HCl更嚴重腐蝕設備,近年來,許多替代方法被探討,熱裂解六亞甲基-1,6-二氨基甲酸甲酯(HDC)生成HDI的途徑符合綠色化學的概念,因此成為熱門的替代方案。
本次重點放在HDC熱裂解生成HDI反應,此步驟需要足夠溫度才能使反應發生,生成的產物HDI在高溫下卻容易產生副反應,適當的操作條件極為重要,為了達到最佳的HDC轉化率及HDI產率,許多實驗條件列入考量,包含溶劑、溫度、觸媒、反應時間、HDC濃度、氮氣。實驗結果顯示,最佳的操作條件為HDC初始濃度9.0wt%、觸媒為0.06質量比的ZnO(ZnO:HDC)、溫度為180℃、反應時間為4小時,此條件下,HDC轉化率趨近100%、HDI產率為88%。
分析實驗數據結果得知,為了有效促使裂解反應進行,必須通入氮氣將產生的甲醇適時移除,否則產生的甲醇會抑制裂解,不利於反應進行,若溶劑含有提供電子的特性,並且搭配ZnO上具有良好吸引電子能力的Zn2+,能促使E1cb的反應機制,並大幅地提高HDC裂解成HDI的反應性。
1,6-hexamethylene diisocyanate (HDI) is one of the most important materials of polyurethane and has been widely used in the manufacture of adhesive, paint, insulator, and synthetic rubber and leather. Traditionally, the HDI synthesis route not only involves extremely toxic phosgene which causes severe hazards to both human body and environment, but also produces seriously corrosive byproduct HCl. Recently, the alternative process of thermal decomposition of dimethylhexane-1,6-dicarbamate (HDC) has become a popular non-phosgene route for the HDI synthesis due to green-chemistry concept.
In the study, the effects of including solvent, temperature, catalyst, reaction time, concentration of HDC, and nitrogen flow are subsequently investigated in order to achieve the highest HDC conversion and HDI yield. The best reaction conditions found are solvent used: PGDE, starting concentration of HDC: 9.0wt%, catalyst: ZnO amount 0.06 (mass ratio of ZnO to HDC), temperature: 180℃, reaction time: 4hr. The conversion of HDC is near 100%, and yield of HDI is 88%.
Analysis of data found that it is important to remove methanol during the process by nitrogen flow. Besides, electron donor ability of the solvent with catalyst ZnO which contains the great electron withdrawing ability of Zn2+ is most critical to inducing the E1cb mechanism and enhancing reactivity of HDC to HDI.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1研究背景 1
1-1-1前言 1
1-1-2 路徑中主要物質簡介 2
1-1-3 1,6-己二異氰酸酯製備方法比較 7
1-2文獻回顧 15
1-3研究動機、目的 19
1-4章節安排 20
第二章 HDC合成HDI研究方法 21
2-1 實驗設備與儀器 21
2-2 實驗藥品 22
2-3 實驗流程 23
2-3-1 HDC標準品配製 23
2-3-2 HDC裂解實驗 26
第三章 HDC合成HDI結果與討論 31
3-1 溶劑因素 31
3-2 溫度因素 38
3-3 觸媒因素 40
3-4 反應時間因素 44
3-5 HDC濃度因素 46
3-6 氮氣因素 48
第四章 總結 50
參考文獻 52
1. Perosa, A., & Zecchini, F. (2007). Methods and reagents for green chemistry: an introduction. John Wiley & Sons.
2. 錢伯章. (2012). 國內外特種異氰酸酯市場與供需. 化學推進劑與高分子材料, 10(5), 36-40.
3. 劉玉海, 趙輝, 及李國平. (2004). 異氰酸酯. 北京: 化學工業出版社.
4. 張俊, 及夏春谷. (2003). 硝基苯還原羥化反應製備氨基甲酸酯選擇性的研究. 化學學報, 61(3), 427-429.
5. 常鵬, 及楊雋. (2006). 固體光氣法合成1, 6-己二異氰酸酯. 聚氨酯工業, 21(2), 15-17.
6. 常鵬, 及楊雋. (2006). 固體光氣法合成HDI及IPTS. 應用化工, 35(1), 30-32.
7. Tafesh, A. M., & Weiguny, J. (1996). A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chemical reviews, 96(6), 2035-2052.
8. Abla, M., Choi, J. C., & Sakakura, T. (2001). Halogen-free process for the conversion of carbon dioxide to urethanes by homogeneous catalysis. Chemical Communications, (21), 2238-2239.
9. Waldman, T. E., & McGhee, W. D. (1994). Isocyanates from primary amines and carbon dioxide:‘dehydration’of carbamate anions. Journal of the Chemical Society, Chemical Communications, (8), 957-958.
10. Braverman, S., Cherkinsky, M., Kedrova, L., & Reiselman, A. (1999). A novel synthesis of isocyanates and ureas via β-elimination of haloform. Tetrahedron letters, 40(16), 3235-3238.
11. Lossen, W. (1872). Ueber Benzoylderivate des Hydroxylamins. Justus Liebigs Annalen der Chemie, 161(2‐3), 347-362.
12. Hofmann, A. W. (1881). On the action of bromine in alkaline solution on amides. Ber. Dtsch. Chem. Ges, 14, 2725-2736.
13. Wallis, E. F., & Lane, J. F. (1946). Org. React. John Wiley & Sons, New York, 3, 267-306.
14. Shioiri, T. (1991). The Hofmann reaction. Comprehensive Organic Synthesis; Trost, BM, Ed.; Pergamon: New York, 6, 800-806.
15. Curtius, T. (1890). Ueber stickstoffwasserstoffsäure (azoimid) N3H. Berichte der deutschen chemischen Gesellschaft, 23(2), 3023-3033.
16. Curtius, T. (1894). 20. Hydrazide und azide organischer säuren I. Abhandlung. Journal für Praktische Chemie, 50(1), 275-294.
17. Schmidt, C. (1874). Hydrologische Untersuchunden. Der Aral und Kaspi-See. Bull. Acad. Imp. Sci. Pb., 20, 130.
18. Pittelkow, M., Lewinsky, R., & Christensen, J. B. (2002). Selective synthesis of carbamate protected polyamines using alkyl phenyl carbonates. Synthesis, 2002(15), 2195-2202.
19. Pei, Y., Li, H., Liu, H., & Zhang, Y. (2011). Kinetic study of methoxycarbonylation of methylene dianiline with dimethyl carbonate using lead acetate catalyst. Industrial & engineering chemistry research, 50(4), 1955-1961.
20. Sun, D. L., Xie, S. J., Deng, J. R., Huang, C. J., Ruckenstein, E., & Chao, Z. S. (2010). CH 3 COONa as an effective catalyst for methoxycarbonylation of 1, 6-hexanediamine by dimethyl carbonate to dimethylhexane-1, 6-dicarbamate. Green Chemistry, 12(3), 483-490.
21. Sun, D. L., Deng, J. R., & Chao, Z. S. (2007). Catalysis over zinc-incorporated berlinite (ZnAlPO 4) of the methoxycarbonylation of 1, 6-hexanediamine with dimethyl carbonate to form dimethylhexane-1, 6-dicarbamate. Chemistry Central Journal, 1(1), 27.
22. Sun, D. L., Luo, J. Y., Wen, R. Y., Deng, J. R., & Chao, Z. S. (2014). Phosgene-free synthesis of hexamethylene-1, 6-diisocyanate by the catalytic decomposition of dimethylhexane-1, 6-dicarbamate over zinc-incorporated berlinite (ZnAlPO4). Journal of hazardous materials, 266, 167-173.
23. 孫大雷, 及鄧劍如. (2007). 合成六亞甲基二氨基甲酸甲酯的熱力學分析. 化學工業與工程, 24(4), 373-377.
24. Zhao, L., He, P., Wang, L., Ammar, M., Cao, Y., & Li, H. (2017). Catalysts screening, optimization and mechanism studies of dimethylhexane-1, 6-dicarbamate synthesis from 1, 6-hexanediamine and dimethyl carbonate over Mn (OAc) 2 catalyst. Catalysis Today, 281, 392-401.
25. Merger, F., & Towae, F. (1987). U.S. Patent No. 4,713,476. Washington, DC: U.S. Patent and Trademark Office.
26. Li, H. Q., Cao, Y., Li, X. T., Wang, L. G., Li, F. J., & Zhu, G. Y. (2013). Heterogeneous catalytic methoxycarbonylation of 1, 6-Hexanediamine by dimethyl carbonate to dimethylhexane-1, 6-dicarbamate. Industrial & Engineering Chemistry Research, 53(2), 626-634.
27. Li, X., Li, H., Liu, H., & Zhu, G. (2011). Non-isothermal thermal decomposition reaction kinetics of dimethylhexane-1, 6-dicarbamate (HDC). Journal of hazardous materials, 198, 376-380.
28. 王振興, 余靜文, 金珊, 于廷云, 及金申. (2012). 1, 6-己二氨基甲酸甲酯熱分解製備六亞甲基二異氰酸酯的研究. 石化技術與應用, (1), 31-35.
29. 覃寧波, 李會泉, 曹妍, 黃科林, 李新濤, 及廖丹葵. (2013). 低沸點溶劑加壓催化熱解製備六亞甲基-1, 6-二異氰酸酯. 石油化工, 42(10), 1141-1147.
30. Hyun, M. J., Shin, M., Kim, Y. J., & Suh, Y. W. (2016). Phosgene-free decomposition of dimethylhexane-1, 6-dicarbamate over ZnO. Research on Chemical Intermediates, 42(1), 57-70.
31. Bock, M., Stroefer, E., Baumann, R., Franzke, A., & Pfeffinger, J. (2014). U.S. Patent No. 8,822,718. Washington, DC: U.S. Patent and Trademark Office.
32. 韓云香, 劉士民, 王培學, 及鄧友全. (2016). 熱分析法研究離子液體催化體系中氨基甲酸酯熱裂解合成異氰酸酯. 分子催化, 30(4), 297-306.
33. Ammar, M., Cao, Y., He, P., Wang, L., Chen, J., & Li, H. (2017). An efficient green route for hexamethylene-1, 6-diisocyanate synthesis by thermal decomposition of hexamethylene-1, 6-dicarbamate over Co3O4/ZSM-5 catalyst: An indirect utilization of CO2. Chinese journal of chemical engineering, 25(12), 1760-1770.
34. Jeong, C., Hyun, M. J., & Suh, Y. W. (2015). Activity of coprecipitated CuO/ZnO catalysts in the decomposition of dimethylhexane-1, 6-dicarbamate. Catalysis Communications, 70, 34-39.
35. 張軍. (2012). HDU 熱解製備 HDI 合成工藝研究 [D] (Doctoral dissertation, 華東理工大學).
36. 劉玉華, 田恒水, 及張海群. (2011). 1, 6-六亞甲基二異氰酸酯的綠色合成. 廣東化工, 38(5), 91-92.
37. 孫彥林, 王桂榮, 王延吉, 及趙新強. (2009). 氨基甲酸酯熱分解製備異氰酸酯的研究進展. 精細石油化工, (2), 77-81.
38. 周昱, 程杰, 劉良明, 姚潔, 王越, 及王公應. (2006). 六亞甲基-1, 6-二異氰酸酯的合成工藝. 聚氨酯工業, 21(4), 44-46.
39. 康武魁, 王公應, 胡常偉, 及經小平. (2003). 異氰酸酯的清潔生產工藝進展. 天然氣化工: C1 化學與化工, 28(2), 36-41.
40. Wang, P., Liu, S., & Deng, Y. (2017). Important Green Chemistry and Catalysis: Non‐phosgene Syntheses of Isocyanates–Thermal Cracking Way. Chinese Journal of Chemistry, 35(6), 821-835.
41. 凡美蓮, 鄧劍如, 陳浪, 及張名凱. (2006). 清潔合成 1, 6-六亞甲基二異氰酸酯. 石油化工, 35(10), 972-975.
42. 孫大雷, 謝順吉, 鄧劍如, 及晁自勝. (2010). 氨基甲酸酯氣相熱分解製六亞甲基-1, 6-二異氰酸酯. 化學反應工程與工藝, (2), 184-187.
43. Bergon, M., Ben Hamida, N., & Calmon, J. P. (1985). Isocyanate formation in the decomposition of phenmedipham in aqueous media. Journal of agricultural and food chemistry, 33(4), 577-583.
44. Chen, W., Liu, Y., Zhang, Y., Fang, J., Xu, P., Xu, J., ... & Wen, W. (2017). Highly effective and specific way for the trace analysis of carbaryl insecticides based on Au 42 Rh 58 alloy nanocrystals. Journal of Materials Chemistry A, 5(15), 7064-7071.
45. Mullins, E., Oldland, R., Liu, Y. A., Wang, S., Sandler, S. I., Chen, C. C., ... & Seavey, K. C. (2006). Sigma-profile database for using COSMO-based thermodynamic methods. Industrial & engineering chemistry research, 45(12), 4389-4415.
46. Benazzouz, A., Moity, L., Pierlot, C., Molinier, V., & Aubry, J. M. (2014). Hansen approach versus COSMO-RS for predicting the solubility of an organic UV filter in cosmetic solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 458, 101-109.
47. 孫大雷, 黃振榮, 黃宇嘉, 鄧劍如, 及晁自勝. (2013). ZnAlPO4催化分解氨基甲酸酯製備六亞甲基-1, 6-二異氰酸酯. 精細石油化工, 30(1), 75-79.
48. Cao, Y., Li, H., Qin, N., & Zhu, G. (2015). Kinetics of the decomposition of dimethylhexane-1, 6-dicarbamate to 1, 6-hexamethylene diisocyanate. Chinese Journal of Chemical Engineering, 23(5), 775-779.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *