帳號:guest(3.144.42.2)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林浩瑋
作者(外文):Lin, Hao-Wei
論文名稱(中文):具有階層式協同效應之雙金屬有機架構材料於高電流密度電解水產氫及產氧之應用
論文名稱(外文):Bi-metallic MOFs Possessing Hierarchical Synergistic Effects as High Performance Electrocatalysts for Overall Water Splitting at High Current Densities
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):衛子健
蔡德豪
口試委員(外文):Wei, Tzu-Chien
Tsai, De-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032556
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:94
中文關鍵詞:金屬有機架構電解水雙金屬有機架構產氫反應產氧反應
外文關鍵詞:metal-organic frameworkalkaline water electrolysisbimetallic MOFhydrogen evolution reactionoxygen evolution reaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:220
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電催化分解水產氫可以將電能轉為氫氣之化學能儲存,補足再生能源如太陽能、風力發電等發電不穩定之缺點。其產物氫氣純度高,且具有高能量密度(120 MJ/kg)、壓縮後易於儲存、不產生碳排放等優點,被視為一具有永續性之產氫技術。電解水產氫之技術已發展數十年,但仍有持續進步之空間。例如目前電解水之電能消耗占了總成本之一半以上,若要降低耗電量,則需使用過電位極低的電極材料。然而,目前標竿電極仍為貴重金屬如Pt、IrO2、RuO2等價昂、稀少之材料,在大規模應用時較難降低生產成本。於此,數十年來不同的電極材料不斷地發展,但在電性表現以及長效性上仍尚未顯著地超越貴金屬電極。
金屬有機架構 (Metal Organic Frameworks,MOFs)之合成技術以及應用在近年來開始蓬勃發展,被視為一新興的催化材料,且在許多領域皆已有出色的表現。其主要由各種過渡金屬離子中心藉由有機配體分子連結,具有多變的結構以及可調控的金屬中心,有助於實際催化能力的提升。然而,大部分金屬有機架構材料之導電性皆極差(約10-10 S m-1),故在早期被發展出來時並沒有太多應用於電化學領域中,且多數研究者也只是將其作為合成其它金屬氧化物、磷化物等之前驅物。此實驗並不將其進行高溫鍛燒,而是將鐵鎳雙金屬有機架構FeNi(BDC)(DMF,F)直接成長於導電泡沫鎳基材並進行電催化OER、HER,省去為了製成電極而加入不導電之黏合劑(binder)的步驟,同時以泡沫鎳的孔洞性質及導電性提升MOF複合材料本身之催化能力。
在經過反應物鐵鎳比例的調控並進行物質鑑定後,我們可得到一OER能力最適化之鐵鎳比例區間,表現優秀的OER、HER以及全電解水能力,也具有與近年文獻相比之下優異的高電流密度長效性。此FeNi(BDC)(DMF,F)/NF在OER表現方面,僅需227 mV之過電位即可達到電流密度60 mA cm−2,HER方面則僅需160 mV之過電位即可達到電流密度10 mA cm−2。在高電流密度(400 mA cm-2)下,亦有突出的表現,產氫以及產氧過電位分別為348和252 mV。全電解水表現方面,在達到電流密度10以及400 mA cm−2分別只需 1.58以及1.9 V之槽電壓(cell voltage),勝過所比較用之標竿電極對Pt-C/NF//IrO2/NF。長效性測試方面,此實驗以全電解水定電壓測試方法,證明此FeNi(BDC)(DMF,F)/NF電極對在30小時高電流密度(初始電流為400 mA cm−2)下電流僅衰退10%左右,且長效性後SEM、XPS、OER、HER催化能力皆無明顯改變,具有足夠的化學穩定性以及機械強度。以氣相層析儀(GC)分析實際產生氫氣以及氧氣量後,證實此電極之OER及HER法拉第效率接近於100%,具有實際應用之價值。
Energy storage is an indispensable part of the green energy infrastructure. It is particularly critical to tackle the detrimental issues of unreliability and intermittency associated with renewable energies. Among the many approaches developed/under development, hydrogen production from renewable energy driven electrolytic water splitting, storing excessive off-peak electricity generated by renewable energies in the form of chemical energy, has drawn a great deal of re-surging research attention in recent years. However, the popular benchmark electrocatalysts for the OER and HER such as IrO2 and Pt/C still suffer from the high cost, Earth-scarcity, and unsatisfactory long-term stability under high current densities. As a result, it is critical to develop high efficiency non-noble metal based, cost-effective and durable electrocatalysts.
Metal organic frameworks (MOFs), possessing versatile catalytic activities, remarkable structural diversity, high surface areas and tunable pore sizes, have been applied to a wide range of applications including chemical sensing, supercapacitor, and gas storage in recent years. Nevertheless, because of their low electrical conductivities (about 10-10 S m-1), only very few MOFs have been directly used as efficient electrocatalysts for the OER and HER. More often, they are utilized as the precursors to derive carbonaceous materials carrying metal or metal-based electrocatalysts through high temperature thermal treatments with potential drawbacks. In this research, the bi-metallic metal organic frameworks, FeNi(BDC)(DMF,F), was grown in-situ on conductive substrates without high temperature treatments and non-conductive binder, showing outstanding electrocatalytic performances toward the OER and HER along with excellent stability at high current densities.
In this study, the adequately modulated FeNi(BDC)(DMF,F)/NF electrode delivered current densities of 60 and 400 mA cm-2 at ultralow overpotentials of 227 and 252 mV, respectively toward the OER, with an ultralow Tafel slope of 37.4 mV dec-1 achieved. Moreover, if serving as a bifunctional electrode, it required only 1.58 and 1.90 V to achieve the current densities of 10 and 400 mA cm-2, respectively for overall water splitting, which is even superior to the pairing of the two benchmark electrodes, Pt-C/NF//IrO2/NF. The stability of the electrodes was also excellent, experiencing only minor chronoamperometric decay after a continuous operation at 400 mA cm−2 for 30 hours. The success may be attributed to the MOF/substrate synergistic effects between the FeNi(BDC)(DMF,F) and the conductive macroporous nickel foam, the inter-molecular synergistic effects between the two constituent MOF phases, and the intra-molecular synergistic effects between the FeO6 and NiO6 clusters of the Fe-rich FeNi(BDC)(DMF,F). Exploration and utilization of the hierarchical synergistic effects proves to be a simple and an effective way to develop ultrahigh performance electrocatalysts.
目錄
摘要 i
Abstract iii
致謝 v
總目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 電解水反應機制 2
1-2.1 HER反應機制 3
1-2.2 OER反應機制 4
1-2.3過電位Ƞ及塔佛斜率Tafel slope 6
1-2.4 Turnover frequency (TOF)計算 7
1-3 電解水實驗原理 9
1-3.1 電解液 9
1-3.2 對電極 9
1-3.3 參考電極 10
1-4 OER、HER觸媒現況及條件 11
1-5 金屬有機架構 12
1-5.1 相對穩定之MOF結構--- Carboxylate-based MOF 14
1-5.2 相對穩定之MOF結構--- Azolate-based MOF 17
1-5-3 以金屬活性點位置分類MOF 19
1-6 實驗動機 21
第二章 文獻回顧 23
2-1 以MOF作為前驅物之材料於OER應用 23
2-2 以MOF作為前驅物之材料於HER應用 30
2-3 以導電金屬為基底之複合材料於電解水應用 37
2-4 直接以MOF作為催化中心於OER、HER之應用 44
第三章 實驗步驟 52
3-1實驗藥品 52
3-2實驗器材 53
3-3分析儀器 53
3-4 電極製備 55
3-4.1 泡沫鎳基材之前處理 55
3-4.2 水熱法之原位(in-situ)成長金屬有機架構於泡沫鎳基材 56
3-4.3 水熱法之bulk MOF粉末製備 56
3-4.4 以黏合劑將bulk MOF粉末製備於空白石墨電極 57
3-4.5 以黏合劑將標竿電極IrO2及Pt-C及bulk MOF粉末製備於泡沫鎳基材電極 57
3-5電化學量測 57
3-5.1 三極式系統OER、HER量測 57
3-5.2 二極式系統全電解水量測 58
3-5.3 Electrochemical Active Surface Area (ECSA) 58
3-5.4 Electrochemical Impedance Spectroscopy (EIS) 59
3-5.5 長效性測試 59
第四章 結果與討論 60
4-1 金屬有機架構於泡沫鎳基材上之形貌及粉末元素含量鑑定 60
4-2 各成分金屬有機架構之結構鑑定 64
4-3 各成分金屬有機架構於泡沫鎳基材之OER電性測試 70
4-4 金屬有機架構於泡沫鎳基材與標竿電極之OER電性比較 74
4-5 各成分金屬有機架構於泡沫鎳基材之HER電性測試 76
4-6 金屬有機架構於泡沫鎳基材之全電解水性能及長效性測試結果 77
4-7 金屬有機架構於泡沫鎳基材之協同效應討論 82
第五章 結論 85
參考文獻 86

1. Whitfield, T. R., Wang, X. Q., Liu, L. M., Jacobson, A. J. (2005). Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions. Solid State Sciences 7, 1096
2. Suen, N. T., Hung, S. F., Quan, Q., Zhang, N., Xu, Y. J., Chen, H. M. (2017). Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337
3. Roger, I., Shipman, M. A., Symes, M. D. (2017). Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry 1, 0003
4. Eisenberg, R. (2009). Rethinking water splitting. Science 324, 44
5. Dekel, D. R. (2018). Review of cell performance in anion exchange membrane fuel cells. Journal of Power Sources 375, 158
6. da Silva, F. S., de Souza, T. M. (2017). Novel materials for solid oxide fuel cell technologies: A literature review. International Journal of Hydrogen Energy 42, 26020
7. Zeng, K., Zhang, D. K. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science 36, 307
8. Audichon, T., Napporn, T. W., Canaff, C., Morais, C., Comminges, C., Kokoh, K. B. (2016). IrO2 coated on RuO2 as efficient and stable electroactive nanocatalysts for electrochemical water splitting. Journal of Physical Chemistry C 120, 2562
9. Lin, C., Batchelor-McAuley, C., Laborda, E., Compton, R. G. (2015). Tafel–Volmer electrode reactions: the influence of electron-transfer kinetics. The Journal of Physical Chemistry C 119, 22415
10. de Chialvo, M. G., Chialvo, A. (1994). Hydrogen evolution reaction: analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model. Journal of Electroanalytical Chemistry 372, 209
11. Sheng, W., Gasteiger, H. A., Shao-Horn, Y. (2010). Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. Journal of The Electrochemical Society 157, B1529
12. Trasatti, S. (1972). Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 39, 163
13. Anantharaj, S., Ede, S., Karthick, K., Sankar, S. S., Sangeetha, K., Karthik, P., Kundu, S. (2018). Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy & Environmental Science 11, 744
14. Kibsgaard, J., Jaramillo, T. F. (2014). Molybdenum phosphosulfide: an active, acid‐stable, earth‐abundant catalyst for the hydrogen evolution reaction. Angewandte Chemie International Edition 53, 14433
15. Song, F., Schenk, K., Hu, X. L. (2016). A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes. Energy & Environmental Science 9, 473
16. Yu, X. Y., Feng, Y., Guan, B. Y., Lou, X. W., Paik, U. (2016). Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy & Environmental Science 9, 1246
17. Cheng, Y. H., Guo, J. N., Huang, Y., Liao, Z. J., Xiang, Z. H. (2017). Ultrastable hydrogen evolution electrocatalyst derived from phosphide postmodified metal-organic frameworks. Nano Energy 35, 115
18. Xuan, C. J., Wang, J., Xia, W. W., Peng, Z. K., Wu, Z. X., Lei, W., Xia, K. D., Xin, H. L. L., Wang, D. L. (2017). Porous structured Ni-Fe-P nanocubes derived from a prussian blue analogue as an electrocatalyst for efficient overall water splitting. Acs Applied Materials & Interfaces 9, 26134
19. Ren, H. N., Huang, Z. H., Yang, Z. Y., Tang, S. J., Kang, F. Y., Lv, R. T. (2017). Facile synthesis of free-standing nickel chalcogenide electrodes for overall water splitting. Journal of Energy Chemistry 26, 1217
20. Tang, C., Cheng, N. Y., Pu, Z. H., Xing, W., Sun, X. P. (2015). NiSe nanowire film supported on nickel foam: an efficient and stable 3d bifunctional electrode for full water splitting. Angewandte Chemie-International Edition 54, 9351
21. Nai, J. W., Lu, Y., Yu, L., Wang, X., Lou, X. W. (2017). Formation of Ni-Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst. Advanced Materials 29, 1703870
22. Di Giovanni, C., Wang, W.-A., Nowak, S., Grenèche, J.-M., Lecoq, H. l. n., Mouton, L., Giraud, M., Tard, C. d. (2014). Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water. Acs Catalysis 4, 681
23. Tian, J., Liu, Q., Cheng, N., Asiri, A. M., Sun, X. (2014). Self‐supported Cu3P nanowire arrays as an integrated high‐performance three‐dimensional cathode for generating hydrogen from water. Angewandte Chemie 126, 9731
24. Jaramillo, T. F., Jørgensen, K. P., Bonde, J., Nielsen, J. H., Horch, S., Chorkendorff, I. (2007). Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. science 317, 100
25. Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X., Zhang, P. (2018). Stable metal–organic frameworks: design, synthesis, and applications. Advanced Materials, 1704303
26. Miller, S. E., Teplensky, M. H., Moghadam, P. Z., Fairen-Jimenez, D. (2016). Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus 6, 20160027
27. Liu, W., Yin, X. B. (2016). Metal-organic frameworks for electrochemical applications. Trac-Trends in Analytical Chemistry 75, 86
28. Kazemi, S. H., Hosseinzadeh, B., Kazemi, H., Kiani, M. A., Hajati, S. (2018). Facile synthesis of mixed metal-organic frameworks: electrode materials for supercapacitors with excellent areal capacitance and operational stability. Acs Applied Materials & Interfaces 10, 23063
29. Wei, Z. Y., Zhu, W. X., Li, Y. G., Ma, Y. Y., Wang, J., Hu, N., Suo, Y. R., Wang, J. L. (2018). Conductive leaflike cobalt metal-organic framework nanoarray on carbon cloth as a flexible and versatile anode toward both electrocatalytic glucose and water oxidation. Inorg. Chem. 57, 8422
30. Tian, T., Zeng, Z. X., Vulpe, D., Casco, M. E., Divitini, G., Midgley, P. A., Silvestre-Albero, J., Tan, J. C., Moghadam, P. Z., Fairen-Jimenez, D. (2018). A sol-gel monolithic metal-organic framework with enhanced methane uptake. Nature Materials 17, 174
31. Hwang, Y. K., Hong, D. Y., Chang, J. S., Jhung, S. H., Seo, Y. K., Kim, J., Vimont, A., Daturi, M., Serre, C., Ferey, G. (2008). Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angewandte Chemie-International Edition 47, 4144
32. Shi, L., Wang, T., Zhang, H., Chang, K., Meng, X., Liu, H., Ye, J. (2015). An amine‐functionalized iron (iii) metal–organic framework as efficient visible‐light photocatalyst for Cr (VI) reduction. Advanced Science 2, 1500006
33. Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., Lillerud, K. P. (2008). A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society 130, 13850
34. Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., Férey, G. (2009). A new photoactive crystalline highly porous titanium (IV) dicarboxylate. Journal of the American Chemical Society 131, 10857
35. Yuan, S., Liu, T.-F., Feng, D., Tian, J., Wang, K., Qin, J., Zhang, Q., Chen, Y.-P., Bosch, M., Zou, L. (2015). A single crystalline porphyrinic titanium metal–organic framework. Chemical science 6, 3926
36. Bueken, B., Vermoortele, F., Vanpoucke, D. E., Reinsch, H., Tsou, C. C., Valvekens, P., De Baerdemaeker, T., Ameloot, R., Kirschhock, C. E., Van Speybroeck, V. (2015). A flexible photoactive titanium metal–organic framework based on a [TiIV3 (μ3‐O)(O) 2 (COO) 6] cluster. Angewandte Chemie International Edition 54, 13912
37. Nguyen, H. L., Gándara, F., Furukawa, H., Doan, T. L., Cordova, K. E., Yaghi, O. M. (2016). A titanium–organic framework as an exemplar of combining the chemistry of metal–and covalent–organic frameworks. Journal of the American Chemical Society 138, 4330
38. Nguyen, L. H., Nguyen, H. L., Doan, T. L., Tran, P. H. (2017). A new superacid hafnium-based metal–organic framework as a highly active heterogeneous catalyst for the synthesis of benzoxazoles under solvent-free conditions. Catalysis Science & Technology 7, 4346
39. Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., Férey, G. (2004). A rationale for the large breathing of the porous aluminum terephthalate (MIL‐53) upon hydration. Chemistry–A European Journal 10, 1373
40. Senkovska, I., Hoffmann, F., Fröba, M., Getzschmann, J., Böhlmann, W., Kaskel, S. (2009). New highly porous aluminium based metal-organic frameworks: Al (OH)(ndc)(ndc= 2, 6-naphthalene dicarboxylate) and Al (OH)(bpdc)(bpdc= 4, 4′-biphenyl dicarboxylate). Microporous and Mesoporous Materials 122, 93
41. Yang, Q., Vaesen, S., Vishnuvarthan, M., Ragon, F., Serre, C., Vimont, A., Daturi, M., De Weireld, G., Maurin, G. (2012). Probing the adsorption performance of the hybrid porous MIL-68 (Al): a synergic combination of experimental and modelling tools. Journal of Materials Chemistry 22, 10210
42. Loiseau, T., Lecroq, L., Volkringer, C., Marrot, J., Férey, G., Haouas, M., Taulelle, F., Bourrelly, S., Llewellyn, P. L., Latroche, M. (2006). MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ 3-oxo-centered trinuclear units. Journal of the American Chemical Society 128, 10223
43. Serre, C., Mellot-Draznieks, C., Surblé, S., Audebrand, N., Filinchuk, Y., Férey, G. (2007). Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828
44. Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 103, 10186
45. Huang, X. C., Lin, Y. Y., Zhang, J. P., Chen, X. M. (2006). Ligand‐directed strategy for zeolite‐type metal–organic frameworks: zinc (II) imidazolates with unusual zeolitic topologies. Angewandte Chemie International Edition 45, 1557
46. Li, Z., Zhang, Z., Ye, Y., Cai, K., Du, F., Zeng, H., Tao, J., Lin, Q., Zheng, Y., Xiang, S. (2017). Rationally tuning host–guest interactions to free hydroxide ions within intertrimerically cuprophilic metal–organic frameworks for high OH− conductivity. Journal of Materials Chemistry A 5, 7816
47. Liang, Z., Qu, C., Xia, D., Zou, R., Xu, Q. (2018). Atomically dispersed metal sites in MOF‐based materials for electrocatalytic and photocatalytic energy conversion. Angewandte Chemie International Edition 57, 9604
48. Lu, X.-F., Liao, P.-Q., Wang, J.-W., Wu, J.-X., Chen, X.-W., He, C.-T., Zhang, J.-P., Li, G.-R., Chen, X.-M. (2016). An alkaline-stable, metal hydroxide mimicking metal–organic framework for efficient electrocatalytic oxygen evolution. Journal of the American Chemical Society 138, 8336
49. Liu, X., Qu, X., Zhang, S., Ke, H., Yang, Q., Shi, Q., Wei, Q., Xie, G., Chen, S. (2015). High-performance energetic characteristics and magnetic properties of a three-dimensional cobalt (II) metal–organic framework assembled with azido and triazole. Inorg. Chem. 54, 11520
50. Zhang, H., Nai, J., Yu, L., Lou, X. W. D. (2017). Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1, 77
51. Yu, X.-Y., Feng, Y., Guan, B., Lou, X. W. D., Paik, U. (2016). Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy & Environmental Science 9, 1246
52. Xu, Y., Tu, W., Zhang, B., Yin, S., Huang, Y., Kraft, M., Xu, R. (2017). Nickel nanoparticles encapsulated in few‐layer nitrogen‐doped graphene derived from metal–organic frameworks as efficient bifunctional electrocatalysts for overall water splitting. Advanced Materials 29, 1605957
53. Zhang, Z. P., Qin, Y. S., Dou, M. L., Ji, J., Wang, F. (2016). One-step conversion from Ni/Fe polyphthalocyanine to N-doped carbon supported Ni-Fe nanoparticles for highly efficient water splitting. Nano Energy 30, 426
54. Huang, L., Ge, X., Dong, S. (2017). A facile conversion of a Ni/Fe coordination polymer to a robust electrocatalyst for the oxygen evolution reaction. RSC Advances 7, 32819
55. Ma, Y., Dai, X., Liu, M., Yong, J., Qiao, H., Jin, A., Li, Z., Huang, X., Wang, H., Zhang, X. (2016). Strongly coupled FeNi alloys/NiFe2O4@ carbonitride layers-assembled microboxes for enhanced oxygen evolution reaction. ACS applied materials & interfaces 8, 34396
56. Xuan, C., Wang, J., Xia, W., Peng, Z., Wu, Z., Lei, W., Xia, K., Xin, H. L., Wang, D. (2017). Porous structured Ni–Fe–P nanocubes derived from a prussian blue analogue as an electrocatalyst for efficient overall water splitting. ACS applied materials & interfaces 9, 26134
57. You, B., Jiang, N., Sheng, M., Gul, S., Yano, J., Sun, Y. (2015). High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks. Chemistry of Materials 27, 7636
58. Zhang, T., Du, J., Xi, P., Xu, C. (2016). Hybrids of cobalt/iron phosphides derived from bimetal–organic frameworks as highly efficient electrocatalysts for oxygen evolution reaction. ACS applied materials & interfaces 9, 362
59. Li, X., Niu, Z., Jiang, J., Ai, L. (2016). Cobalt nanoparticles embedded in porous N-rich carbon as an efficient bifunctional electrocatalyst for water splitting. Journal of Materials Chemistry A 4, 3204
60. Xu, Y., Tu, W. G., Zhang, B. W., Yin, S. M., Huang, Y. Z., Kraft, M., Xu, R. (2017). Nickel nanoparticles encapsulated in few-layer nitrogen-doped graphene derived from metal-organic frameworks as efficient bifunctional electrocatalysts for overall. Advanced Materials 29, 1605957
61. Fan, L., Liu, P. F., Yan, X., Gu, L., Yang, Z. Z., Yang, H. G., Qiu, S., Yao, X. (2016). Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nature communications 7, 10667
62. Qamar, M., Adam, A., Merzougui, B., Helal, A., Abdulhamid, O., Siddiqui, M. (2016). Metal–organic framework-guided growth of Mo 2 C embedded in mesoporous carbon as a high-performance and stable electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A 4, 16225
63. Wu, S., Shen, X., Zhu, G., Zhou, H., Ji, Z., Ma, L., Xu, K., Yang, J., Yuan, A. (2017). Metal organic framework derived NiFe@ N-doped graphene microtube composites for hydrogen evolution catalyst. Carbon 116, 68
64. Tian, T., Ai, L., Jiang, J. (2015). Metal–organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation from water splitting. RSC Advances 5, 10290
65. Cheng, Y., Guo, J., Huang, Y., Liao, Z., Xiang, Z. (2017). Ultrastable hydrogen evolution electrocatalyst derived from phosphide postmodified metal-organic frameworks. Nano energy 35, 115
66. Xu, M., Han, L., Han, Y., Yu, Y., Zhai, J., Dong, S. (2015). Porous CoP concave polyhedron electrocatalysts synthesized from metal–organic frameworks with enhanced electrochemical properties for hydrogen evolution. Journal of Materials Chemistry A 3, 21471
67. You, B., Jiang, N., Sheng, M., Bhushan, M. W., Sun, Y. (2015). Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catalysis 6, 714
68. Sivanantham, A., Shanmugam, S. (2017). Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Applied Catalysis B: Environmental 203, 485
69. Ahn, S. H., Manthiram, A. (2017). Direct growth of ternary Ni–Fe–P porous nanorods onto nickel foam as a highly active, robust bi-functional electrocatalyst for overall water splitting. Journal of Materials Chemistry A 5, 2496
70. Aijaz, A., Masa, J., Rösler, C., Xia, W., Weide, P., Fischer, R. A., Schuhmann, W., Muhler, M. (2017). Metal–organic framework derived carbon nanotube grafted cobalt/carbon polyhedra grown on nickel foam: an efficient 3d electrode for full water splitting. ChemElectroChem 4, 188
71. Ming, F., Liang, H., Shi, H., Xu, X., Mei, G., Wang, Z. (2016). MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. Journal of Materials Chemistry A 4, 15148
72. Duan, J. J., Chen, S., Zhao, C. (2017). Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nature Communications 8, 15341
73. Senthil Raja, D., Chuah, X. F., Lu, S. Y. (2018). In situ grown bimetallic MOF‐based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Advanced Energy Materials, 1801065
74. Sun, Q., Liu, M., Li, K., Han, Y., Zuo, Y., Chai, F., Song, C., Zhang, G., Guo, X. (2017). Synthesis of Fe/M (M= Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions. Inorganic Chemistry Frontiers 4, 144
75. Mesbah, A., Rabu, P., Sibille, R., Lebègue, S. b., Mazet, T., Malaman, B., François, M. (2014). From hydrated Ni3 (OH) 2 (C8H4O4) 2 (H2O) 4 to anhydrous Ni2 (OH) 2 (C8H4O4): impact of structural transformations on magnetic properties. Inorg. Chem. 53, 872
76. Shastri, A., Das, A. K., Krishnakumar, S., Singh, P. J., Raja Sekhar, B. (2017). Spectroscopy of N, N-dimethylformamide in the VUV and IR regions: Experimental and computational studies. The Journal of chemical physics 147, 224305
77. Jao, T., Scott, I., Steele, D. (1982). The vibrational spectra of amides—dimethyl formamide. Journal of Molecular Spectroscopy 92, 1
78. Ståkhandske, C. M., Mink, J., Sandström, M., Pápai, I., Johansson, P. (1997). Vibrational spectroscopic and force field studies of N, N-dimethylthioformamide, N, N-dimethylformamide, their deuterated analogues and bis (N, N-dimethylthioformamide) mercury (II) perchlorate. Vibrational spectroscopy 14, 207
79. Ai, L., Zhang, C., Li, L., Jiang, J. (2014). Iron terephthalate metal–organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Applied Catalysis B: Environmental 148, 191
80. Gordon, J., Kazemian, H., Rohani, S. (2012). Rapid and efficient crystallization of MIL-53 (Fe) by ultrasound and microwave irradiation. Microporous and Mesoporous Materials 162, 36
81. Davar, F., Fereshteh, Z., Salavati-Niasari, M. (2009). Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. Journal of Alloys and Compounds 476, 797
82. Simon, J. A., Vickraman, P., Reddy, B. J. (2018). Synthesis and characterization of high porous carbon sphere@ nickel oxide core-shell nanocomposite for supercapacitor applications. Journal of Electroanalytical Chemistry
83. Breeze, M. I., Clet, G., Campo, B. C., Vimont, A., Daturi, M., Grenèche, J.-M., Dent, A. J., Millange, F., Walton, R. I. (2013). Isomorphous substitution in a flexible metal–organic framework: mixed-metal, mixed-valent MIL-53 type materials. Inorg. Chem. 52, 8171
84. Sivanantham, A., Ganesan, P., Shanmugam, S. (2016). Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Advanced Functional Materials 26, 4661
85. Guo, P., Wu, J., Li, X. B., Luo, J., Lau, W. M., Liu, H., Sun, X. L., Liu, L. M. (2018). A highly stable bifunctional catalyst based on 3D Co(OH)(2)@NCNTs@NF towards overall water-splitting. Nano Energy 47, 96
86. Liu, J. L., Zhu, D. D., Ling, T., Vasileff, A., Qiao, S. Z. (2017). S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 40, 264
87. Hu, E. L., Feng, Y. F., Nai, J. W., Zhao, D., Hu, Y., Lou, X. W. (2018). Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy & Environmental Science 11, 872
88. Zhou, L., Shao, M. G., Li, J. B., Jiang, S., Wei, M., Duan, X. (2017). Two-dimensional ultrathin arrays of CoP: Electronic modulation toward high performance overall water splitting. Nano Energy 41, 583
89. Wang, L., Wu, Y., Cao, R., Ren, L., Chen, M., Feng, X., Zhou, J., Wang, B. (2016). Fe/Ni metal–organic frameworks and their binder-free thin films for efficient oxygen evolution with low overpotential. ACS applied materials & interfaces 8, 16736
90. Xing, J., Guo, K., Zou, Z., Cai, M., Du, J., Xu, C. (2018). In situ growth of well-ordered NiFe-MOF-74 on Ni foam by Fe 2+ induction as an efficient and stable electrocatalyst for water oxidation. ChCom 54, 7046
91. Xu, N., Cao, G., Chen, Z., Kang, Q., Dai, H., Wang, P. (2017). Cobalt nickel boride as an active electrocatalyst for water splitting. Journal of Materials Chemistry A 5, 12379
92. Tang, T., Jiang, W.-J., Niu, S., Liu, N., Luo, H., Chen, Y.-Y., Jin, S.-F., Gao, F., Wan, L.-J., Hu, J.-S. (2017). Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. Journal of the American Chemical Society 139, 8320
93. Ahnfeldt, T., Gunzelmann, D., Loiseau, T., Hirsemann, D., Senker, J., Ferey, G., Stock, N. (2009). Synthesis and modification of a functionalized 3d open-framework structure with MIL-53 topology. Inorg. Chem. 48, 3057
94. Shi, H., Liang, H., Ming, F., Wang, Z. (2017). Efficient overall water‐splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres. Angewandte Chemie 129, 588
95. Li, Y., Yin, J., An, L., Lu, M., Sun, K., Zhao, Y. Q., Gao, D., Cheng, F., Xi, P. (2018). FeS2/CoS2 Interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small, 1801070
96. Liu, M., Zheng, W., Ran, S., Boles, S. T., Lee, L. Y. S. (2018). Overall water‐splitting electrocatalysts based on 2D CoNi‐metal‐organic frameworks and its derivative. Advanced Materials Interfaces, 1800849
97. Xu, J., Li, J., Xiong, D., Zhang, B., Liu, Y., Wu, K.-H., Amorim, I., Li, W., Liu, L. (2018). Trends in activity for the oxygen evolution reaction on transition metal (M= Fe, Co, Ni) phosphide pre-catalysts. Chemical science 9, 3470
98. Friebel, D., Louie, M. W., Bajdich, M., Sanwald, K. E., Cai, Y., Wise, A. M., Cheng, M. J., Sokaras, D., Weng, T. C., Alonso-Mori, R., Davis, R. C., Bargar, J. R., Norskov, J. K., Nilsson, A., Bell, A. T. (2015). Identification of highly active Fe sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the American Chemical Society 137, 1305
99. Louie, M. W., Bell, A. T. (2013). An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. Journal of the American Chemical Society 135, 12329
100. Trotochaud, L., Young, S. L., Ranney, J. K., Boettcher, S. W. (2014). Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Journal of the American Chemical Society 136, 6744
101. Subbaraman, R., Tripkovic, D., Chang, K.-C., Strmcnik, D., Paulikas, A. P., Hirunsit, P., Chan, M., Greeley, J., Stamenkovic, V., Markovic, N. M. (2012). Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Nature materials 11, 550

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *