|
1. Whitfield, T. R., Wang, X. Q., Liu, L. M., Jacobson, A. J. (2005). Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions. Solid State Sciences 7, 1096 2. Suen, N. T., Hung, S. F., Quan, Q., Zhang, N., Xu, Y. J., Chen, H. M. (2017). Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337 3. Roger, I., Shipman, M. A., Symes, M. D. (2017). Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry 1, 0003 4. Eisenberg, R. (2009). Rethinking water splitting. Science 324, 44 5. Dekel, D. R. (2018). Review of cell performance in anion exchange membrane fuel cells. Journal of Power Sources 375, 158 6. da Silva, F. S., de Souza, T. M. (2017). Novel materials for solid oxide fuel cell technologies: A literature review. International Journal of Hydrogen Energy 42, 26020 7. Zeng, K., Zhang, D. K. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science 36, 307 8. Audichon, T., Napporn, T. W., Canaff, C., Morais, C., Comminges, C., Kokoh, K. B. (2016). IrO2 coated on RuO2 as efficient and stable electroactive nanocatalysts for electrochemical water splitting. Journal of Physical Chemistry C 120, 2562 9. Lin, C., Batchelor-McAuley, C., Laborda, E., Compton, R. G. (2015). Tafel–Volmer electrode reactions: the influence of electron-transfer kinetics. The Journal of Physical Chemistry C 119, 22415 10. de Chialvo, M. G., Chialvo, A. (1994). Hydrogen evolution reaction: analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model. Journal of Electroanalytical Chemistry 372, 209 11. Sheng, W., Gasteiger, H. A., Shao-Horn, Y. (2010). Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. Journal of The Electrochemical Society 157, B1529 12. Trasatti, S. (1972). Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 39, 163 13. Anantharaj, S., Ede, S., Karthick, K., Sankar, S. S., Sangeetha, K., Karthik, P., Kundu, S. (2018). Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy & Environmental Science 11, 744 14. Kibsgaard, J., Jaramillo, T. F. (2014). Molybdenum phosphosulfide: an active, acid‐stable, earth‐abundant catalyst for the hydrogen evolution reaction. Angewandte Chemie International Edition 53, 14433 15. Song, F., Schenk, K., Hu, X. L. (2016). A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes. Energy & Environmental Science 9, 473 16. Yu, X. Y., Feng, Y., Guan, B. Y., Lou, X. W., Paik, U. (2016). Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy & Environmental Science 9, 1246 17. Cheng, Y. H., Guo, J. N., Huang, Y., Liao, Z. J., Xiang, Z. H. (2017). Ultrastable hydrogen evolution electrocatalyst derived from phosphide postmodified metal-organic frameworks. Nano Energy 35, 115 18. Xuan, C. J., Wang, J., Xia, W. W., Peng, Z. K., Wu, Z. X., Lei, W., Xia, K. D., Xin, H. L. L., Wang, D. L. (2017). Porous structured Ni-Fe-P nanocubes derived from a prussian blue analogue as an electrocatalyst for efficient overall water splitting. Acs Applied Materials & Interfaces 9, 26134 19. Ren, H. N., Huang, Z. H., Yang, Z. Y., Tang, S. J., Kang, F. Y., Lv, R. T. (2017). Facile synthesis of free-standing nickel chalcogenide electrodes for overall water splitting. Journal of Energy Chemistry 26, 1217 20. Tang, C., Cheng, N. Y., Pu, Z. H., Xing, W., Sun, X. P. (2015). NiSe nanowire film supported on nickel foam: an efficient and stable 3d bifunctional electrode for full water splitting. Angewandte Chemie-International Edition 54, 9351 21. Nai, J. W., Lu, Y., Yu, L., Wang, X., Lou, X. W. (2017). Formation of Ni-Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst. Advanced Materials 29, 1703870 22. Di Giovanni, C., Wang, W.-A., Nowak, S., Grenèche, J.-M., Lecoq, H. l. n., Mouton, L., Giraud, M., Tard, C. d. (2014). Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water. Acs Catalysis 4, 681 23. Tian, J., Liu, Q., Cheng, N., Asiri, A. M., Sun, X. (2014). Self‐supported Cu3P nanowire arrays as an integrated high‐performance three‐dimensional cathode for generating hydrogen from water. Angewandte Chemie 126, 9731 24. Jaramillo, T. F., Jørgensen, K. P., Bonde, J., Nielsen, J. H., Horch, S., Chorkendorff, I. (2007). Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. science 317, 100 25. Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X., Zhang, P. (2018). Stable metal–organic frameworks: design, synthesis, and applications. Advanced Materials, 1704303 26. Miller, S. E., Teplensky, M. H., Moghadam, P. Z., Fairen-Jimenez, D. (2016). Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus 6, 20160027 27. Liu, W., Yin, X. B. (2016). Metal-organic frameworks for electrochemical applications. Trac-Trends in Analytical Chemistry 75, 86 28. Kazemi, S. H., Hosseinzadeh, B., Kazemi, H., Kiani, M. A., Hajati, S. (2018). Facile synthesis of mixed metal-organic frameworks: electrode materials for supercapacitors with excellent areal capacitance and operational stability. Acs Applied Materials & Interfaces 10, 23063 29. Wei, Z. Y., Zhu, W. X., Li, Y. G., Ma, Y. Y., Wang, J., Hu, N., Suo, Y. R., Wang, J. L. (2018). Conductive leaflike cobalt metal-organic framework nanoarray on carbon cloth as a flexible and versatile anode toward both electrocatalytic glucose and water oxidation. Inorg. Chem. 57, 8422 30. Tian, T., Zeng, Z. X., Vulpe, D., Casco, M. E., Divitini, G., Midgley, P. A., Silvestre-Albero, J., Tan, J. C., Moghadam, P. Z., Fairen-Jimenez, D. (2018). A sol-gel monolithic metal-organic framework with enhanced methane uptake. Nature Materials 17, 174 31. Hwang, Y. K., Hong, D. Y., Chang, J. S., Jhung, S. H., Seo, Y. K., Kim, J., Vimont, A., Daturi, M., Serre, C., Ferey, G. (2008). Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angewandte Chemie-International Edition 47, 4144 32. Shi, L., Wang, T., Zhang, H., Chang, K., Meng, X., Liu, H., Ye, J. (2015). An amine‐functionalized iron (iii) metal–organic framework as efficient visible‐light photocatalyst for Cr (VI) reduction. Advanced Science 2, 1500006 33. Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., Lillerud, K. P. (2008). A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society 130, 13850 34. Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., Férey, G. (2009). A new photoactive crystalline highly porous titanium (IV) dicarboxylate. Journal of the American Chemical Society 131, 10857 35. Yuan, S., Liu, T.-F., Feng, D., Tian, J., Wang, K., Qin, J., Zhang, Q., Chen, Y.-P., Bosch, M., Zou, L. (2015). A single crystalline porphyrinic titanium metal–organic framework. Chemical science 6, 3926 36. Bueken, B., Vermoortele, F., Vanpoucke, D. E., Reinsch, H., Tsou, C. C., Valvekens, P., De Baerdemaeker, T., Ameloot, R., Kirschhock, C. E., Van Speybroeck, V. (2015). A flexible photoactive titanium metal–organic framework based on a [TiIV3 (μ3‐O)(O) 2 (COO) 6] cluster. Angewandte Chemie International Edition 54, 13912 37. Nguyen, H. L., Gándara, F., Furukawa, H., Doan, T. L., Cordova, K. E., Yaghi, O. M. (2016). A titanium–organic framework as an exemplar of combining the chemistry of metal–and covalent–organic frameworks. Journal of the American Chemical Society 138, 4330 38. Nguyen, L. H., Nguyen, H. L., Doan, T. L., Tran, P. H. (2017). A new superacid hafnium-based metal–organic framework as a highly active heterogeneous catalyst for the synthesis of benzoxazoles under solvent-free conditions. Catalysis Science & Technology 7, 4346 39. Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., Férey, G. (2004). A rationale for the large breathing of the porous aluminum terephthalate (MIL‐53) upon hydration. Chemistry–A European Journal 10, 1373 40. Senkovska, I., Hoffmann, F., Fröba, M., Getzschmann, J., Böhlmann, W., Kaskel, S. (2009). New highly porous aluminium based metal-organic frameworks: Al (OH)(ndc)(ndc= 2, 6-naphthalene dicarboxylate) and Al (OH)(bpdc)(bpdc= 4, 4′-biphenyl dicarboxylate). Microporous and Mesoporous Materials 122, 93 41. Yang, Q., Vaesen, S., Vishnuvarthan, M., Ragon, F., Serre, C., Vimont, A., Daturi, M., De Weireld, G., Maurin, G. (2012). Probing the adsorption performance of the hybrid porous MIL-68 (Al): a synergic combination of experimental and modelling tools. Journal of Materials Chemistry 22, 10210 42. Loiseau, T., Lecroq, L., Volkringer, C., Marrot, J., Férey, G., Haouas, M., Taulelle, F., Bourrelly, S., Llewellyn, P. L., Latroche, M. (2006). MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ 3-oxo-centered trinuclear units. Journal of the American Chemical Society 128, 10223 43. Serre, C., Mellot-Draznieks, C., Surblé, S., Audebrand, N., Filinchuk, Y., Férey, G. (2007). Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828 44. Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 103, 10186 45. Huang, X. C., Lin, Y. Y., Zhang, J. P., Chen, X. M. (2006). Ligand‐directed strategy for zeolite‐type metal–organic frameworks: zinc (II) imidazolates with unusual zeolitic topologies. Angewandte Chemie International Edition 45, 1557 46. Li, Z., Zhang, Z., Ye, Y., Cai, K., Du, F., Zeng, H., Tao, J., Lin, Q., Zheng, Y., Xiang, S. (2017). Rationally tuning host–guest interactions to free hydroxide ions within intertrimerically cuprophilic metal–organic frameworks for high OH− conductivity. Journal of Materials Chemistry A 5, 7816 47. Liang, Z., Qu, C., Xia, D., Zou, R., Xu, Q. (2018). Atomically dispersed metal sites in MOF‐based materials for electrocatalytic and photocatalytic energy conversion. Angewandte Chemie International Edition 57, 9604 48. Lu, X.-F., Liao, P.-Q., Wang, J.-W., Wu, J.-X., Chen, X.-W., He, C.-T., Zhang, J.-P., Li, G.-R., Chen, X.-M. (2016). An alkaline-stable, metal hydroxide mimicking metal–organic framework for efficient electrocatalytic oxygen evolution. Journal of the American Chemical Society 138, 8336 49. Liu, X., Qu, X., Zhang, S., Ke, H., Yang, Q., Shi, Q., Wei, Q., Xie, G., Chen, S. (2015). High-performance energetic characteristics and magnetic properties of a three-dimensional cobalt (II) metal–organic framework assembled with azido and triazole. Inorg. Chem. 54, 11520 50. Zhang, H., Nai, J., Yu, L., Lou, X. W. D. (2017). Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1, 77 51. Yu, X.-Y., Feng, Y., Guan, B., Lou, X. W. D., Paik, U. (2016). Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy & Environmental Science 9, 1246 52. Xu, Y., Tu, W., Zhang, B., Yin, S., Huang, Y., Kraft, M., Xu, R. (2017). Nickel nanoparticles encapsulated in few‐layer nitrogen‐doped graphene derived from metal–organic frameworks as efficient bifunctional electrocatalysts for overall water splitting. Advanced Materials 29, 1605957 53. Zhang, Z. P., Qin, Y. S., Dou, M. L., Ji, J., Wang, F. (2016). One-step conversion from Ni/Fe polyphthalocyanine to N-doped carbon supported Ni-Fe nanoparticles for highly efficient water splitting. Nano Energy 30, 426 54. Huang, L., Ge, X., Dong, S. (2017). A facile conversion of a Ni/Fe coordination polymer to a robust electrocatalyst for the oxygen evolution reaction. RSC Advances 7, 32819 55. Ma, Y., Dai, X., Liu, M., Yong, J., Qiao, H., Jin, A., Li, Z., Huang, X., Wang, H., Zhang, X. (2016). Strongly coupled FeNi alloys/NiFe2O4@ carbonitride layers-assembled microboxes for enhanced oxygen evolution reaction. ACS applied materials & interfaces 8, 34396 56. Xuan, C., Wang, J., Xia, W., Peng, Z., Wu, Z., Lei, W., Xia, K., Xin, H. L., Wang, D. (2017). Porous structured Ni–Fe–P nanocubes derived from a prussian blue analogue as an electrocatalyst for efficient overall water splitting. ACS applied materials & interfaces 9, 26134 57. You, B., Jiang, N., Sheng, M., Gul, S., Yano, J., Sun, Y. (2015). High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks. Chemistry of Materials 27, 7636 58. Zhang, T., Du, J., Xi, P., Xu, C. (2016). Hybrids of cobalt/iron phosphides derived from bimetal–organic frameworks as highly efficient electrocatalysts for oxygen evolution reaction. ACS applied materials & interfaces 9, 362 59. Li, X., Niu, Z., Jiang, J., Ai, L. (2016). Cobalt nanoparticles embedded in porous N-rich carbon as an efficient bifunctional electrocatalyst for water splitting. Journal of Materials Chemistry A 4, 3204 60. Xu, Y., Tu, W. G., Zhang, B. W., Yin, S. M., Huang, Y. Z., Kraft, M., Xu, R. (2017). Nickel nanoparticles encapsulated in few-layer nitrogen-doped graphene derived from metal-organic frameworks as efficient bifunctional electrocatalysts for overall. Advanced Materials 29, 1605957 61. Fan, L., Liu, P. F., Yan, X., Gu, L., Yang, Z. Z., Yang, H. G., Qiu, S., Yao, X. (2016). Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nature communications 7, 10667 62. Qamar, M., Adam, A., Merzougui, B., Helal, A., Abdulhamid, O., Siddiqui, M. (2016). Metal–organic framework-guided growth of Mo 2 C embedded in mesoporous carbon as a high-performance and stable electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A 4, 16225 63. Wu, S., Shen, X., Zhu, G., Zhou, H., Ji, Z., Ma, L., Xu, K., Yang, J., Yuan, A. (2017). Metal organic framework derived NiFe@ N-doped graphene microtube composites for hydrogen evolution catalyst. Carbon 116, 68 64. Tian, T., Ai, L., Jiang, J. (2015). Metal–organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation from water splitting. RSC Advances 5, 10290 65. Cheng, Y., Guo, J., Huang, Y., Liao, Z., Xiang, Z. (2017). Ultrastable hydrogen evolution electrocatalyst derived from phosphide postmodified metal-organic frameworks. Nano energy 35, 115 66. Xu, M., Han, L., Han, Y., Yu, Y., Zhai, J., Dong, S. (2015). Porous CoP concave polyhedron electrocatalysts synthesized from metal–organic frameworks with enhanced electrochemical properties for hydrogen evolution. Journal of Materials Chemistry A 3, 21471 67. You, B., Jiang, N., Sheng, M., Bhushan, M. W., Sun, Y. (2015). Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catalysis 6, 714 68. Sivanantham, A., Shanmugam, S. (2017). Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Applied Catalysis B: Environmental 203, 485 69. Ahn, S. H., Manthiram, A. (2017). Direct growth of ternary Ni–Fe–P porous nanorods onto nickel foam as a highly active, robust bi-functional electrocatalyst for overall water splitting. Journal of Materials Chemistry A 5, 2496 70. Aijaz, A., Masa, J., Rösler, C., Xia, W., Weide, P., Fischer, R. A., Schuhmann, W., Muhler, M. (2017). Metal–organic framework derived carbon nanotube grafted cobalt/carbon polyhedra grown on nickel foam: an efficient 3d electrode for full water splitting. ChemElectroChem 4, 188 71. Ming, F., Liang, H., Shi, H., Xu, X., Mei, G., Wang, Z. (2016). MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. Journal of Materials Chemistry A 4, 15148 72. Duan, J. J., Chen, S., Zhao, C. (2017). Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nature Communications 8, 15341 73. Senthil Raja, D., Chuah, X. F., Lu, S. Y. (2018). In situ grown bimetallic MOF‐based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Advanced Energy Materials, 1801065 74. Sun, Q., Liu, M., Li, K., Han, Y., Zuo, Y., Chai, F., Song, C., Zhang, G., Guo, X. (2017). Synthesis of Fe/M (M= Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions. Inorganic Chemistry Frontiers 4, 144 75. Mesbah, A., Rabu, P., Sibille, R., Lebègue, S. b., Mazet, T., Malaman, B., François, M. (2014). From hydrated Ni3 (OH) 2 (C8H4O4) 2 (H2O) 4 to anhydrous Ni2 (OH) 2 (C8H4O4): impact of structural transformations on magnetic properties. Inorg. Chem. 53, 872 76. Shastri, A., Das, A. K., Krishnakumar, S., Singh, P. J., Raja Sekhar, B. (2017). Spectroscopy of N, N-dimethylformamide in the VUV and IR regions: Experimental and computational studies. The Journal of chemical physics 147, 224305 77. Jao, T., Scott, I., Steele, D. (1982). The vibrational spectra of amides—dimethyl formamide. Journal of Molecular Spectroscopy 92, 1 78. Ståkhandske, C. M., Mink, J., Sandström, M., Pápai, I., Johansson, P. (1997). Vibrational spectroscopic and force field studies of N, N-dimethylthioformamide, N, N-dimethylformamide, their deuterated analogues and bis (N, N-dimethylthioformamide) mercury (II) perchlorate. Vibrational spectroscopy 14, 207 79. Ai, L., Zhang, C., Li, L., Jiang, J. (2014). Iron terephthalate metal–organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Applied Catalysis B: Environmental 148, 191 80. Gordon, J., Kazemian, H., Rohani, S. (2012). Rapid and efficient crystallization of MIL-53 (Fe) by ultrasound and microwave irradiation. Microporous and Mesoporous Materials 162, 36 81. Davar, F., Fereshteh, Z., Salavati-Niasari, M. (2009). Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. Journal of Alloys and Compounds 476, 797 82. Simon, J. A., Vickraman, P., Reddy, B. J. (2018). Synthesis and characterization of high porous carbon sphere@ nickel oxide core-shell nanocomposite for supercapacitor applications. Journal of Electroanalytical Chemistry 83. Breeze, M. I., Clet, G., Campo, B. C., Vimont, A., Daturi, M., Grenèche, J.-M., Dent, A. J., Millange, F., Walton, R. I. (2013). Isomorphous substitution in a flexible metal–organic framework: mixed-metal, mixed-valent MIL-53 type materials. Inorg. Chem. 52, 8171 84. Sivanantham, A., Ganesan, P., Shanmugam, S. (2016). Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Advanced Functional Materials 26, 4661 85. Guo, P., Wu, J., Li, X. B., Luo, J., Lau, W. M., Liu, H., Sun, X. L., Liu, L. M. (2018). A highly stable bifunctional catalyst based on 3D Co(OH)(2)@NCNTs@NF towards overall water-splitting. Nano Energy 47, 96 86. Liu, J. L., Zhu, D. D., Ling, T., Vasileff, A., Qiao, S. Z. (2017). S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 40, 264 87. Hu, E. L., Feng, Y. F., Nai, J. W., Zhao, D., Hu, Y., Lou, X. W. (2018). Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy & Environmental Science 11, 872 88. Zhou, L., Shao, M. G., Li, J. B., Jiang, S., Wei, M., Duan, X. (2017). Two-dimensional ultrathin arrays of CoP: Electronic modulation toward high performance overall water splitting. Nano Energy 41, 583 89. Wang, L., Wu, Y., Cao, R., Ren, L., Chen, M., Feng, X., Zhou, J., Wang, B. (2016). Fe/Ni metal–organic frameworks and their binder-free thin films for efficient oxygen evolution with low overpotential. ACS applied materials & interfaces 8, 16736 90. Xing, J., Guo, K., Zou, Z., Cai, M., Du, J., Xu, C. (2018). In situ growth of well-ordered NiFe-MOF-74 on Ni foam by Fe 2+ induction as an efficient and stable electrocatalyst for water oxidation. ChCom 54, 7046 91. Xu, N., Cao, G., Chen, Z., Kang, Q., Dai, H., Wang, P. (2017). Cobalt nickel boride as an active electrocatalyst for water splitting. Journal of Materials Chemistry A 5, 12379 92. Tang, T., Jiang, W.-J., Niu, S., Liu, N., Luo, H., Chen, Y.-Y., Jin, S.-F., Gao, F., Wan, L.-J., Hu, J.-S. (2017). Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. Journal of the American Chemical Society 139, 8320 93. Ahnfeldt, T., Gunzelmann, D., Loiseau, T., Hirsemann, D., Senker, J., Ferey, G., Stock, N. (2009). Synthesis and modification of a functionalized 3d open-framework structure with MIL-53 topology. Inorg. Chem. 48, 3057 94. Shi, H., Liang, H., Ming, F., Wang, Z. (2017). Efficient overall water‐splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres. Angewandte Chemie 129, 588 95. Li, Y., Yin, J., An, L., Lu, M., Sun, K., Zhao, Y. Q., Gao, D., Cheng, F., Xi, P. (2018). FeS2/CoS2 Interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small, 1801070 96. Liu, M., Zheng, W., Ran, S., Boles, S. T., Lee, L. Y. S. (2018). Overall water‐splitting electrocatalysts based on 2D CoNi‐metal‐organic frameworks and its derivative. Advanced Materials Interfaces, 1800849 97. Xu, J., Li, J., Xiong, D., Zhang, B., Liu, Y., Wu, K.-H., Amorim, I., Li, W., Liu, L. (2018). Trends in activity for the oxygen evolution reaction on transition metal (M= Fe, Co, Ni) phosphide pre-catalysts. Chemical science 9, 3470 98. Friebel, D., Louie, M. W., Bajdich, M., Sanwald, K. E., Cai, Y., Wise, A. M., Cheng, M. J., Sokaras, D., Weng, T. C., Alonso-Mori, R., Davis, R. C., Bargar, J. R., Norskov, J. K., Nilsson, A., Bell, A. T. (2015). Identification of highly active Fe sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the American Chemical Society 137, 1305 99. Louie, M. W., Bell, A. T. (2013). An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. Journal of the American Chemical Society 135, 12329 100. Trotochaud, L., Young, S. L., Ranney, J. K., Boettcher, S. W. (2014). Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Journal of the American Chemical Society 136, 6744 101. Subbaraman, R., Tripkovic, D., Chang, K.-C., Strmcnik, D., Paulikas, A. P., Hirunsit, P., Chan, M., Greeley, J., Stamenkovic, V., Markovic, N. M. (2012). Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Nature materials 11, 550
|