帳號:guest(3.22.75.223)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王建程
作者(外文):Wang, Chien-Cheng
論文名稱(中文):氫氣與一氧化碳混合進料的固態氧化物燃料電池Aspen模擬
論文名稱(外文):Aspen Simulation of Solid Oxide Fuel Cells with Hydrogen and Carbon Monoxide Mixed Feed
指導教授(中文):鄭西顯
指導教授(外文):Jang, Shi-Shang
口試委員(中文):汪上曉
康嘉麟
口試委員(外文):Wong, Shang-Hsiao
Kang, Jia-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032553
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:50
中文關鍵詞:固態氧化物燃料電池動態模型電化學模型
外文關鍵詞:Solid oxide fuel cellDynamics modelElectrochemcial model
相關次數:
  • 推薦推薦:0
  • 點閱點閱:153
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
固態氧化物燃料電池(SOFC)已被開發為能量產生的裝置,具有約60%的高能量轉換效率和燃料選擇的靈活性,本篇研究為整合SOFC上下游製程設計,需建立完整的50KW系統製程,透過商用軟體Aspen Plus® 於Aspen Custom Modeler (ACM) 建立動態響應SOFC電池堆數學模型,調整參數使模型與設備擬合並用於動態及穩態模擬操作,另外,可延伸應用於Aspen Plus® 進行製程評估使用。本研究初期先與1KW SOFC的工廠數據進行數學模型的驗證,在建立數學模型的過程中發現,若此數學模型與過去文獻中只考慮氫氣的電化學模型所得到的模擬結果將與工廠數據有明顯的差異,故本研究引用一氧化碳的電化學模型,並調整電池規格及材料性質,完成小規模SOFC數學模型的驗證。從模擬結果來看,當考慮兩種電化學反應時,模擬和實驗結果的誤差相較於只考慮一種電化學反應明顯下降。完成SOFC數學模型的建立後,再透過Aspen Plus建立50KW SOFC完整的製程系統,與工廠數據進行數據驗證,並完成動態及穩態操作的模擬。
Solid oxide fuel cells (SOFCs) have been developed as energy generating devices with around 60% high energy conversion efficiency and great flexibility in fuel selection. In this study, the SOFC related operations and process design technologies are required to integrate up and down streams of the SOFC system. Hence, the purpose of this study is to establish a dynamic response SOFC mathematical model in Aspen Custom Modeler (ACM) through Aspen Plus®, and adjust parameters to fit models and unit operations for dynamic and steady-state simulation operations, and extend to Aspen Plus® for process evaluation. At the beginning of the study, the model was verified with the factory data of 1KW SOFC. In the process of establishing the model, it was found that if the model only considers the electrochemical model of hydrogen, which is same as the past literature, the simulation results were significantly different from the factory data. Therefore, this study cites the electrochemical of carbon monoxide and adjusts the fuel cell specifications and material properties to complete the verification of the small-scale SOFC model. From the simulation results, when considering two kinds of electrochemical reactions, the error between the simulation and experimental results is significantly lower than that of considering only one electrochemical reaction. After establishing the SOFC model, a complete 50KW SOFC process system was established through Aspen Plus in order to verify the factory data, and the dynamic and steady-state operation simulation has been completed.
摘要 II
Abstract III
致謝 IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1研究背景 1
1.2研究動機及目的 3
1.3文獻回顧 4
第二章 研究方法 10
2.1模擬簡介 10
2.2化學動力學 11
2.3質量平衡式 13
2.4 能量平衡式 14
2.5 電化學模型 15
2.6 模型效能因素 20
第三章 研究結果及討論 21
3.1 模型規格及參數設定 21
3.2 1KW SOFC電池堆模擬結果 23
3.3 50KW SOFC Process 模擬結果 28
3.3.1 50KW SOFC穩態模擬結果 29
3.3.2 50KW SOFC動態模擬結果 32
第四章 結論 43
參數表 44
參考文獻 48

1. Singhal, S.C. and K. Kendall, High-temperature solid oxide fuel cells: fundamentals, design and applications. 2003: Elsevier.
2. Andersson, M., J. Yuan, and B. Sundén, 2013, SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants. Journal of Power Sources. 232: p. 42-54.
3. Debenedetti, P. and C. Vayenas, 1983, Steady-state analysis of high temperature fuel cells. Chemical Engineering Science. 38(11): p. 1817-1829.
4. Aguiar, P., C. Adjiman, and N.P. Brandon, 2004, Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance. Journal of power sources. 138(1): p. 120-136.
5. Stiller, C., B. Thorud, S. Seljebø, Ø. Mathisen, H. Karoliussen, and O. Bolland, 2005, Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells. Journal of power sources. 141(2): p. 227-240.
6. Nikooyeh, K., A.A. Jeje, and J.M. Hill, 2007, 3D modeling of anode-supported planar SOFC with internal reforming of methane. Journal of Power Sources. 171(2): p. 601-609.
7. Eguchi, K., H. Kojo, T. Takeguchi, R. Kikuchi, and K. Sasaki, 2002, Fuel flexibility in power generation by solid oxide fuel cells. Solid State Ionics. 152: p. 411-416.
8. Sumi, H., D. Kennouche, K. Yakal-Kremski, T. Suzuki, S.A. Barnett, D.J. Miller, T. Yamaguchi, K. Hamamoto, and Y. Fujishiro, 2016, Electrochemical and microstructural properties of Ni–(Y 2 O 3) 0.08 (ZrO 2) 0.92–(Ce 0.9 Gd 0.1) O 1.95 anode-supported microtubular solid oxide fuel cells. Solid State Ionics. 285: p. 227-233.
9. Gharbage, B., T. Pagnier, and A. Hammou, 1994, Oxygen Reduction at La0. 5Sr0. 5MnO3 Thin Film/Yttria‐Stabilized Zirconia Interface Studied by Impedance Spectroscopy. Journal of The Electrochemical Society. 141(8): p. 2118-2121.
10. Chen, J., F. Liang, D. Yan, J. Pu, B. Chi, S.P. Jiang, and L. Jian, 2010, Performance of large-scale anode-supported solid oxide fuel cells with impregnated La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ+ Y2O3 stabilized ZrO2 composite cathodes. Journal of Power Sources. 195(16): p. 5201-5205.
11. Suwanwarangkul, R., E. Croiset, E. Entchev, S. Charojrochkul, M. Pritzker, M. Fowler, P. Douglas, S. Chewathanakup, and H. Mahaudom, 2006, Experimental and modeling study of solid oxide fuel cell operating with syngas fuel. Journal of Power Sources. 161(1): p. 308-322.
12. Amiri, A., P. Vijay, M.O. Tadé, K. Ahmed, G.D. Ingram, V. Pareek, and R. Utikar, 2016, Planar SOFC system modelling and simulation including a 3D stack module. International Journal of Hydrogen Energy. 41(4): p. 2919-2930.
13. Massardo, A. and F. Lubelli. Internal reforming solid oxide fuel cell-gas turbine combined cycles (IRSOFC-GT): Part A—Cell model and cycle thermodynamic analysis. in ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. 1998. American Society of Mechanical Engineers.
14. Wu, W., S.-A. Chen, and Y.-C. Chiu, 2016, Design and Control of an SOFC/GT Hybrid Power Generation System with Low Carbon Emissions. Industrial & Engineering Chemistry Research. 55(5): p. 1281-1291.
15. Lee, A.L., R. Zabransky, and W. Huber, 1990, Internal reforming development for solid oxide fuel cells. Industrial & engineering chemistry research. 29(5): p. 766-773.
16. Achenbach, E. and E. Riensche, 1994, Methane/steam reforming kinetics for solid oxide fuel cells. Journal of Power Sources. 52(2): p. 283-288.
17. Haberman, B. and J. Young, 2004, Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. International Journal of Heat and Mass Transfer. 47(17-18): p. 3617-3629.
18. Shen, S. and M. Ni, 2015, 2D segment model for a solid oxide fuel cell with a mixed ionic and electronic conductor as electrolyte. international journal of hydrogen energy. 40(15): p. 5160-5168.
19. Ni, M., 2012, Modeling of SOFC running on partially pre-reformed gas mixture. International journal of hydrogen energy. 37(2): p. 1731-1745.
20. Razbani, O. and M. Assadi, 2013, Performance of a biohydrogen solid oxide fuel cell. International Journal of Hydrogen Energy. 38(31): p. 13781-13791.
21. AZom, 2001, Stainless Steel - Grade 430.



(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *