帳號:guest(3.15.18.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阮智暐
作者(外文):Juan, Chih-Wei
論文名稱(中文):設計與合成氨基酸嵌段高分子予體與非富勒烯高分子受體於太陽能電池之研究
論文名稱(外文):Design and Synthesis of Oligopeptide-based Diblock Copolymer and Non-Fullerene Polymer for Organic Solar Cells
指導教授(中文):周鶴修
指導教授(外文):Chou, Ho-Hsiu
口試委員(中文):衛子健
李文亞
口試委員(外文):Wei, Tzu-Chien
Lee, Wen-Ya
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032552
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:131
中文關鍵詞:有機太陽能電池軟性拉伸材料氨基酸嵌段高分子非富勒烯高分子
外文關鍵詞:organic solar cellsoft materialOligopeptide-based Diblock CopolymerNon-Fullerene Polymer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:127
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
有機太陽能電池因製程簡單、低成本、大面積製造,近年很多國內外學者投入於研究此領域,在這之中本質上可拉伸有機太陽能電池作為穿戴式發電裝置顯示出極大潛力,這些裝置應提供良好的機械耐久性和高功率轉換效率,已符合實現運用於商業中。
本研究目的在於設計與合成具有不同寡聚氨基酸片段嵌入光電高分子予體和非富勒烯高分子受體並應用於太陽能電池,在氨基酸嵌段高分子予體部分藉由引入氨基酸分子間氫鍵強拉伸性質,當嵌段高分子受到外力應變時,可以透過耗散氫鍵鍵結能量來維持形貌。本研究發表了新穎Oligopeptide Diblock Copolymer的合成及性質,其化學結構可以表示為(Donor-Acceptor)n-(Donor-Peptide)1-n。在性質上Poly[(5,6-dihydro-5-octyl-4,6-dioxo-4H-thieno[3,4-c]pyrrole-1,3-diyl)[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl]](PBDTTPD)具有一定效率的表現,而引入氨基酸之後,因高分子鏈上具有氫鍵作用,可使得高分子可適應大幅度拉伸變化並具有可自我修復潛能。在OPV(Organic PhotoVoltaics)元件效率表現部分,使用氨基酸嵌段共聚物效率僅下降10%,然而在stretchable OPV元件,使用氨基酸嵌段共聚物效率是使用PBDTTPD 共軛高分子效率之4倍,這也成功顯示氨基酸嵌段共聚物應用於軟性的電子元件上的表現是較好的。
為了更進一步提高電子元件之效率,我們設計並開發新穎合成非富勒烯高分子受體,將目前非富勒烯電子受體材料ITIC(3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene)與不同之單體,像是:噻吩(Thiophene)、苯(Benzene)等等聚合,獲得以ITIC為主的高分子聚合物,這是目前世界上第一個以ITIC為主結構的高分子,我們相信ITIC本身的平面性和良好的吸收光區域,再加上我們引入不同之單體,能進一步調控吸收光區域和能階,我們所合成出ITIC高分子在可見光區域具有更強的吸收,將來應用於元件我們預期能夠獲得高效率的表現。
Recently, organic solar cell has received great attention because of low cost, ease of large-scale process and trend of sustainable energy. In the aspect of developing wearable energy-harvesting devices, intrinsically stretchable solar cell as the power supply reveals the huge potential to dump into the industry with the robust mechanical properties and high power conversion efficiency (PCE).
Herein, in this research, oligo-peptide-embedded opto-di-block copolymers are synthesized by the expectation of biocompatibility, stretchability from hydrogen bonding, and potential self-healing properties.
Donor-Acceptor-Donor-Peptide di-block copolymers ((Donor-Acceptor)n-(Donor-Peptide)1-n), which are consisted of benzo[1,2-b:4,5-b’]dithiophene (BDT) (donor), thieno[3,4-c]pyrrole-4,6- dione (TPD) (acceptor), an amino acid(segment of breaking conjugation and providing hydrogen bonding), are synthesized via Stille’s coupling (PBDTTPD).To compare the above materials, Donor-Acceptor copolymers (PBDTTPD) as the reference are synthesized as well. PBDTTPD shows high performance in the previous reports. By incorporation of the amino acid segment, the hydrogen driven self-healing and stretchability can be observed in the PBDTTPD system.
Copolymers application in the OPV device compared to the polymer PBDTTPD that power conversion efficiency (PCE) just decreased by 10%. In addition, Copolymers application in the stretchable solar cell compared to the polymer PBDTTPD that power conversion efficiency (PCE) increase 4 times.
To improve the efficiency of the solar cell, we designed and developed a novel synthesis method to obtain ITIC-based polymers by modifying the functional group and introducing monomers into the current non-Fuller electron acceptor ITIC. To our knowledge, this is first ITIC polymer, we believe that ITIC's own planarity and good absorption of light, coupled with our modified functional groups to further adjust the energy gap, can achieve high efficiency in the performance of photovoltaic components.
目錄
摘要 I
Abstract III
謝誌 V
圖目錄 VI
附圖目錄 XI
目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 電子皮膚之發展 2
1-2.1 製造可拉伸裝置的方法 4
1-3有機太陽能電池 8
1-3.1 有機太陽電池之發展 8
1-3.2 有機太陽電池之工作原理 8
1-3.3 有機太陽能電池之結構 9
1-3.4 單層結構太陽能電池(single-layer solar cell) 10
1-3.5 雙層異質接面型太陽能電池(bilayer-heterojunction solar cell) 10
1-3.6 混摻異質接面型太陽能電池(Bulk-heterojunction solar cell) 11
1-3.6 Benzodithiophene(BDT)系列予體材料 12
1-3.7 富勒烯和非富勒烯受體材料 13
1-4 可拉伸聚合物太陽能電池設計 14
1-4.1 拉伸有機太陽電池之發展[44] 14
1-4.2 拉伸聚合物主鏈設計 18
1-5 拉伸太陽能電池性質量測與分析 21
1-5.1 光電轉換效率(power conversion efficiency, PCE) 21
1-5.2 開路電壓(open circuit voltage, VOC) 21
1-5.3 短路電流密度(short circuit current density, JSC) 21
1-5.4 填充因子(Fill Factor, FF) 22
1-5.5 拉伸極限(Stretchability Limitation) 22
第二章 氨基酸嵌段高分子予體合成與特性 24
2.1 研究動機 24
2.2 合成設計與步驟 25
2.2.1 單體合成 25
2.2.2 高分子聚合物合成 37
2.3 結構分析 40
2.4 光物理性質分析 47
2.5 熱物理性質分析 50
2.6 密度泛函理論計算(Density Functional Theory Calculation) 53
2.7 高分子之光伏元件表現 57
2.8 高分子之拉伸光伏元件表現 58
2.9 高分子之薄膜態結構分析 59
2.10 高分子機械性值分析 62
2.11 結論 72
第三章 非富勒烯高分子受體合成與特性 74
3.1 研究動機 74
3.2 合成設計與步驟 75
3.2.1 單體合成 75
3.2.2 高分子合成步驟 77
3.3 光物理性質分析 80
3.4 熱物理性質分析 85
3.5 結論 86
第四章 未來展望 87
參考文獻 88
附錄一量測原理、藥品、儀器、製程方法 92
附錄二 核磁共振光譜資料 97
附錄三 分子量圖譜 124

[1] V. R. Wheatley, R. P. Reinertson, J Invest Dermatol 1958, 31, 51.
[2] J. Tegin, J. Wikander, Ind Robot 2005, 32, 64.
[3] J. Brudny, J. Korein, L. Levidow, Lieberma.A, B. Grynbaum, L. Friedman, Neurology 1974, 24, 374.
[4] M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, Z. A. Bao, Adv Mater 2013, 25, 5997.
[5] T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Nat Mater 2010, 9, 1015.
[6] J. A. Rogers, T. Someya, Y. G. Huang, Science 2010, 327, 1603.
[7] K. Park, D. K. Lee, B. S. Kim, H. Jeon, N. E. Lee, D. Whang, H. J. Lee, Y. J. Kim, J. H. Ahn, Adv Funct Mater 2010, 20, 3577.
[8] D. Y. Khang, H. Q. Jiang, Y. Huang, J. A. Rogers, Science 2006, 311, 208.
[9] H. S. Wu, S. Kustra, E. M. Gates, C. J. Bettinger, Org Electron 2013, 14, 1636.
[10] D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. G. Y. Huang, Z. J. Liu, C. Lu, J. A. Rogers, Science 2008, 320, 507.
[11] D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, Z. N. Bao, Adv Mater 2011, 23, 1771.
[12] D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J. E. Lee, C. Song, S. J. Kim, D. J. Lee, S. W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C. S. Hwang, N. S. Lu, T. Hyeon, D. H. Kim, Nat Nanotechnol 2014, 9, 397.
[13] R. C. Webb, A. P. Bonifas, A. Behnaz, Y. H. Zhang, K. J. Yu, H. Y. Cheng, M. X. Shi, Z. G. Bian, Z. J. Liu, Y. S. Kim, W. H. Yeo, J. S. Park, J. Z. Song, Y. H. Li, Y. G. Huang, A. M. Gorbach, J. A. Rogers, Nat Mater 2013, 12, 1078.
[14] N. Kang, W. Choi, H. Kim, C. S. Kim, S. Jo, Ecs Solid State Lett 2015, 4, P88.
[15] C. Dagdeviren, Y. W. Su, P. Joe, R. Yona, Y. H. Liu, Y. S. Kim, Y. A. Huang, A. R. Damadoran, J. Xia, L. W. Martin, Y. G. Huang, J. A. Rogers, Nat Commun 2014, 5.
[16] T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, T. Sakurai, P Natl Acad Sci USA 2005, 102, 12321.
[17] T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, Science 2008, 321, 1468.
[18] J. Yoon, S. Y. Hong, Y. Lim, S. J. Lee, G. Zi, J. S. Ha, Adv Mater 2014, 26, 6580.
[19] N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani, T. Someya, Nat Commun 2015, 6.
[20] S. Kim, J. Byun, S. Choi, D. Kim, T. Kim, S. Chung, Y. Hong, Adv Mater 2014, 26, 3094.
[21] T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, T. Someya, Science 2009, 326, 1516.
[22] F. Xu, Y. Zhu, Adv Mater 2012, 24, 5117.
[23] D. Wang, H. Y. Li, M. F. Li, H. Q. Jiang, M. Xia, Z. Zhou, J Mater Chem C 2013, 1, 2744.
[24] Y. Y. Zhang, C. J. Sheehan, J. Y. Zhai, G. F. Zou, H. M. Luo, J. Xiong, Y. T. Zhu, Q. X. Jia, Adv Mater 2010, 22, 3027.
[25] Y. Y. Lee, H. Y. Kang, S. H. Gwon, G. M. Choi, S. M. Lim, J. Y. Sun, Y. C. Joo, Adv Mater 2016, 28, 1636.
[26] D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C. K. Tee, J. A. Bolander, Z. A. Bao, Chem Mater 2012, 24, 373.
[27] P. C. Li, K. Sun, J. Y. Ouyang, Acs Appl Mater Inter 2015, 7, 18415.
[28] H. Spanggaard, F. C. Krebs, Sol Energ Mat Sol C 2004, 83, 125.
[29] P. Kumaresan, S. Vegiraju, Y. Ezhumalai, S. L. Yau, C. Kim, W. H. Lee, M. C. Chen, Polymers-Basel 2014, 6, 2645.
[30] C. W. Tang, A. C. Albrecht, Nature 1975, 254, 507.
[31] A. K. Ghosh, D. L. Morel, T. Feng, R. F. Shaw, C. A. Rowe, J Appl Phys 1974, 45, 230.
[32] A. Facchetti, Mater Today 2013, 16, 123.
[33] T. Kim, J. H. Kim, T. E. Kang, C. Lee, H. Kang, M. Shin, C. Wang, B. W. Ma, U. Jeong, T. S. Kim, B. J. Kim, Nat Commun 2015, 6.
[34] B. Qu, D. Tian, Z. Y. Cong, W. P. Wang, Z. W. An, C. Gao, Z. Gao, H. S. Yang, L. P. Zhang, L. X. Xiao, Z. J. Chen, Q. H. Gong, J Phys Chem C 2013, 117, 3272.
[35] L. J. Huo, J. H. Hou, Polym Chem-Uk 2011, 2, 2453.
[36] Y. P. Zou, A. Najari, P. Berrouard, S. Beaupre, B. R. Aich, Y. Tao, M. Leclerc, J Am Chem Soc 2010, 132, 5330.
[37] C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge, J. M. J. Frechet, J Am Chem Soc 2010, 132, 7595.
[38] T. Y. Chu, J. P. Lu, S. Beaupre, Y. G. Zhang, J. R. Pouliot, S. Wakim, J. Y. Zhou, M. Leclerc, Z. Li, J. F. Ding, Y. Tao, J Am Chem Soc 2011, 133, 4250.
[39] D. P. Qian, L. Ye, M. J. Zhang, Y. R. Liang, L. J. Li, Y. Huang, X. Guo, S. Q. Zhang, Z. A. Tan, J. H. Hou, Macromolecules 2012, 45, 9611.
[40] S. H. Liao, H. J. Jhuo, Y. S. Cheng, S. A. Chen, Adv Mater 2013, 25, 4766.
[41] Q. Wang, S. Q. Zhang, B. W. Xu, S. S. Li, B. Yang, W. X. Yuan, J. H. Hou, J Phys Chem C 2017, 121, 4825.
[42] Y. Z. Lin, J. Y. Wang, Z. G. Zhang, H. T. Bai, Y. F. Li, D. B. Zhu, X. W. Zhan, Adv Mater 2015, 27, 1170.
[43] W. C. Zhao, S. S. Li, H. F. Yao, S. Q. Zhang, Y. Zhang, B. Yang, J. H. Hou, J Am Chem Soc 2017, 139, 7148.
[44] S. E. Root, S. Savagatrup, A. D. Printz, D. Rodriquez, D. J. Lipomi, Chem Rev 2017, 117, 6467.
[45] E. J. Sawyer, A. V. Zaretski, A. D. Printz, V. Nathaniel, A. Bautista-Gutierrez, D. J. J. E. M. L. Lipomi, 2016, 8, 78.
[46] M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci, S. Bauer, Nat Commun 2012, 3.
[47] V. Fthenakis, A. Anctil, Ieee Phot Spec Conf 2013.
[48] A. Anctil, C. W. Babbitt, R. P. Raffaelle, B. J. Landi, Environ Sci Technol 2011, 45, 2353.
[49] F. C. Krebs, T. D. Nielsen, J. Fyenbo, M. Wadstrom, M. S. Pedersen, Energ Environ Sci 2010, 3, 512.
[50] F. C. Krebs, N. Espinosa, M. Hosel, R. R. Sondergaard, M. Jorgensen, Adv Mater 2014, 26, 29.
[51] D. J. Lipomi, H. Chong, M. Vosgueritchian, J. G. Mei, Z. A. Bao, Sol Energ Mat Sol C 2012, 107, 355.
[52] S. Savagatrup, A. S. Makaram, D. J. Burke, D. J. Lipomi, Adv Funct Mater 2014, 24, 2264.
[53] S. Savagatrup, D. Rodriquez, A. D. Printz, A. B. Sieval, J. C. Hummelen, D. J. Lipomi, Chem Mater 2015, 27, 3902.
[54] D. J. Lipomi, Z. A. Bao, Energ Environ Sci 2011, 4, 3314.
[55] A. D. Printz, S. Savagatrup, D. J. Burke, T. N. Purdy, D. J. Lipomi, Rsc Adv 2014, 4, 13635.
[56] Z. C. Smith, Z. M. Wright, A. M. Arnold, G. Sauve, R. D. McCullough, S. A. Sydlik, Adv Electron Mater 2017, 3.
[57] J. Y. Oh, S. Rondeau-Gagne, Y. C. Chiu, A. Chortos, F. Lissel, G. J. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. X. Zhu, X. D. Gu, W. G. Bae, Y. Kim, L. H. Jin, J. W. Chung, J. B. H. Tok, Z. N. Bao, Nature 2016, 539, 411.
[58] G. J. N. Wang, A. Gasperini, Z. A. Bao, Adv Electron Mater 2018, 4.
[59] S. Savagatrup, X. K. Zhao, E. Chan, J. G. Mei, D. J. Lipomi, Macromol Rapid Comm 2016, 37, 1623.
[60] J. Y. Sun, X. H. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. G. Suo, Nature 2012, 489, 133.
[61] H. J. Kim, J. H. Kim, J. H. Ryu, Y. Kim, H. Kang, W. B. Lee, T. S. Kim, B. J. Kim, Acs Nano 2014, 8, 10461.
[62] A. D. Printz, D. J. Lipomi, Appl Phys Rev 2016, 3.
[63] J. Liu, Y. J. Shi, Y. Yang, Adv Funct Mater 2001, 11, 420.
[64] J. K. J. van Duren, J. Loos, F. Morrissey, C. M. Leewis, K. P. H. Kivits, L. J. van IJzendoorn, M. T. Rispens, J. C. Hummelen, R. A. J. Janssen, Adv Funct Mater 2002, 12, 665.
[65] X. C. Bao, Y. J. Wang, Q. Q. Zhu, N. Wang, D. Q. Zhu, J. Y. Wang, A. L. Yang, R. Q. Yang, J Power Sources 2015, 297, 53.
[66] D. J. Lipomi, Adv Mater 2016, 28, 4180.
[67] G. J. N. Wang, F. Molina-Lopez, H. Y. Zhang, J. Xu, H. C. Wu, J. Lopez, L. Shaw, J. Mun, Q. H. Zhang, S. H. Wang, A. Ehrlich, Z. A. Bao, Macromolecules 2018, 51, 4976.
[68] W. Lee, C. Lee, H. Yu, D. J. Kim, C. Wang, H. Y. Woo, J. H. Oh, B. J. Kim, Adv Funct Mater 2016, 26, 1543.
[69] S. X. Dai, F. W. Zhao, Q. Q. Zhang, T. K. Lau, T. F. Li, K. Liu, Q. D. Ling, C. R. Wang, X. H. Lu, W. You, X. W. Zhan, J Am Chem Soc 2017, 139, 1336.
[70] Z. Q. Zhang, W. Q. Liu, T. Rehman, H. X. Ju, J. Q. Mai, X. H. Lu, M. M. Shi, J. F. Zhu, C. Z. Li, H. Z. Chen, J Mater Chem A 2017, 5, 9649.
[71] Z. G. Zhang, Y. K. Yang, J. Yao, L. W. Xue, S. S. Chen, X. J. Li, W. Morrison, C. Yang, Y. F. Li, Angew Chem Int Edit 2017, 56, 13503.
[72] J. Wilbuer, G. Schnakenburg, B. Esser, Eur J Org Chem 2016, 2404.
[73] Y. P. Qin, L. Ye, S. Q. Zhang, J. Zhu, B. Yang, H. Ade, J. H. Hou, J Mater Chem A 2018, 6, 4324.
[74] Heng-Chuan Lin, 國立中山大學碩士論文, 中華民國一零七年七月

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 設計與合成高熱穩定性三蝶烯衍生物之電子傳輸材料應用於有機發光二極體
2. 設計環鉑高分子奈米顆粒之受體共聚單體來提升其於可見光催化產氫效率與穩定性
3. 設計與合成環鉑高分子奈米顆粒應用於可見光催化產氫:探討分子幾何構型之影響
4. 一、具可拉伸、透明、抗水解及自修復特性之彈性體應用於仿皮膚之觸覺感測器 二、聚氨酯基彈性體的同步輻射研究
5. 設計與合成含二苯并磷氧化物之聚合物以應用於高效可見光催化產氫
6. 嵌入式微結構電容感測器應用於流體檢測
7. 線性之光照誘導之蒽交聯聚氨酯—具有可拉伸、防水、抗菌和可修復特性之多應用性材料
8. 可伸縮性,自黏性和自愈性之彈性聚合物,具可調節金屬配位和多重氫鍵之可穿戴電子傳感器
9. 探討不同π連接分子及予體取代基位置之予體-π-受體共軛聚合物於光催化產氫的影響
10. 用於可撓性壓力感測器之前瞻材料開發:1. 具雙模式修復之高分子並用於仿生觸覺感測器 2. 合成耐高溫碳化矽纖維並用於溫度與壓力感測器
11. 含氟小分子誘導可拉伸及具自修復特性之彈性聚合物應用於仿皮膚之感測器
12. 具可拉伸及自修復高分子應用於電子皮膚上之形狀記憶、類皮膚感測與3D列印軟性機器人
13. 透過主鏈工程策略將親水非共軛結構單元引入共軛高分子以增強光催化水分解產氫效能
14. 探討引入親水性寡乙二醇合成側鏈橋接型共軛聚合物於光催化產氫之影響
15. 探討予體-受體共軛高分子之分子量對於光催化產氫的影響
 
* *