|
[1] J.-M. Jehng, C.-M. Chen, Amination of polyethylene glycol to polyetheramine over the supported nickel catalysts, Catalysis letters, 77 (2001) 147-154. [2] C.-Y. Lin, F.-C. Chou, D.-H. Tsai, Mechanistic understanding of surface reduction of Cu Ce O hybrid nanoparticles for catalytic methane combustion, Journal of the Taiwan Institute of Chemical Engineers, (2018). [3] M.V.e. Klyuev, M.L.v. Khidekel', Catalytic amination of alcohols, aldehydes, and ketones, Russian Chemical Reviews, 49 (1980) 14-27. [4] S. Bähn, S. Imm, L. Neubert, M. Zhang, H. Neumann, M. Beller, The Catalytic Amination of Alcohols, ChemCatChem, 3 (2011) 1853-1864. [5] K.-i. Shimizu, K. Kon, W. Onodera, H. Yamazaki, J.N. Kondo, Heterogeneous Ni Catalyst for Direct Synthesis of Primary Amines from Alcohols and Ammonia, ACS Catalysis, 3 (2012) 112-117. [6] J.H. Cho, J.H. Park, T.-S. Chang, G. Seo, C.-H. Shin, Reductive amination of 2-propanol to monoisopropylamine over Co/γ-Al2O3 catalysts, Applied Catalysis A: General, 417-418 (2012) 313-319. [7] G. Sewell, C. O'Connor, E. Van Steen, Reductive amination of ethanol with silica-supported cobalt and nickel catalysts, Applied Catalysis A: General, 125 (1995) 99-112. [8] D. Cheng, Z. Wang, Y. Xia, Y. Wang, W. Zhang, W. Zhu, Catalytic amination of diethylene glycol with tertiarybutylamine over Ni–Al2O3 catalysts with different Ni/Al ratios, RSC Advances, 6 (2016) 102373-102380. [9] R.V. Jagadeesh, K. Murugesan, A.S. Alshammari, H. Neumann, M.-M. Pohl, J.r. Radnik, M. Beller, MOF-derived cobalt nanoparticles catalyze a general synthesis of amines, Science, 358 (2017) 326-332. [10] A.Y.K. Leung, K. Hellgardt, K.K.M. Hii, Catalysis in Flow: Nickel-Catalyzed Synthesis of Primary Amines from Alcohols and NH3, ACS Sustainable Chemistry & Engineering, 6 (2018) 5479-5484. [11] A.S. Dumon, T. Wang, J. Ibañez, A. Tomer, Z. Yan, R. Wischert, P. Sautet, M. Pera-Titus, C. Michel, Direct n-octanol amination by ammonia on supported Ni and Pd catalysts: activity is enhanced by “spectator” ammonia adsorbates, Catalysis Science & Technology, 8 (2018) 611-621. [12] Y. Liu, K. Zhou, H. Shu, H. Liu, J. Lou, D. Guo, Z. Wei, X. Li, Switchable synthesis of furfurylamine and tetrahydrofurfurylamine from furfuryl alcohol over RANEY® nickel, Catalysis Science & Technology, 7 (2017) 4129-4135. [13] D. Ruiz, A. Aho, P. Mäki-Arvela, N. Kumar, H. Oliva, D.Y. Murzin, Direct Amination of Dodecanol over Noble and Transition Metal Supported Silica Catalysts, Industrial & Engineering Chemistry Research, 56 (2017) 12878-12887. [14] K.-i. Shimizu, Heterogeneous catalysis for the direct synthesis of chemicals by borrowing hydrogen methodology, Catalysis Science & Technology, 5 (2015) 1412-1427. [15] C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, C. Sanchez, Aerosol route to functional nanostructured inorganic and hybrid porous materials, Adv Mater, 23 (2011) 599-623. [16] S.K. Kim, H. Chang, H.D. Jang, Synthesis of micron-sized porous CeO2SiO2 composite particles for ultraviolet absorption, Advanced Powder Technology, 28 (2017) 406-410. [17] H. Chang, H.D. Jang, Controlled synthesis of porous particles via aerosol processing and their applications, Advanced Powder Technology, 25 (2014) 32-42. [18] K. Okuyama, M. Abdullah, I.W. Lenggoro, F. Iskandar, Preparation of functional nanostructured particles by spray drying, Advanced Powder Technology, 17 (2006) 587-611. [19] F. Iskandar, H. Chang, K. Okuyama, Preparation of microencapsulated powders by an aerosol spray method and their optical properties, Advanced Powder Technology, 14 (2003) 349-367. [20] D. Ruiz, A. Aho, T. Saloranta, K. Eränen, J. Wärnå, R. Leino, D.Y. Murzin, Direct amination of dodecanol with NH3 over heterogeneous catalysts. Catalyst screening and kinetic modelling, Chemical Engineering Journal, 307 (2017) 739-749. [21] J. Xiaoyuan, L. Guanglie, Z. Renxian, M. Jianxin, C. Yu, Z. Xiaoming, Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts, Applied Surface Science, 173 (2001) 208-220. [22] S. Li, M. Wen, H. Chen, Z. Ni, J. Xu, J. Shen, Amination of isopropanol to isopropylamine over a highly basic and active Ni/LaAlSiO catalyst, Journal of Catalysis, 350 (2017) 141-148. [23] T.-Y. Liang, C.-Y. Lin, F.-C. Chou, M. Wang, D.-H. Tsai, Gas-Phase Synthesis of Ni–CeOx Hybrid Nanoparticles and Their Synergistic Catalysis for Simultaneous Reforming of Methane and Carbon Dioxide to Syngas, The Journal of Physical Chemistry C, 122 (2018) 11789-11798. [24] H.L. Wang, H. Yeh, Y.C. Chen, Y.C. Lai, C.Y. Lin, K.Y. Lu, R.M. Ho, B.H. Li, C.H. Lin, D.H. Tsai, Thermal Stability of Metal-Organic Frameworks and Encapsulation of CuO Nanocrystals for Highly Active Catalysis, ACS Appl Mater Interfaces, 10 (2018) 9332-9341. [25] L. Deng, J. Zhu, H. Chen, H. Wang, J. Shen, Microcalorimetric adsorption and infrared spectroscopic studies of supported nickel catalysts for the hydrogenation of diisopropylimine to diisopropylamine, Journal of Catalysis, 362 (2018) 35-45. [26] E. Hong, S. Bang, J.H. Cho, K.D. Jung, C.-H. Shin, Reductive amination of isopropanol to monoisopropylamine over Ni-Fe/γ-Al2O3 catalysts: Synergetic effect of Ni-Fe alloy formation, Applied Catalysis A: General, 542 (2017) 146-153. [27] J.H. Cho, S.H. An, T.-S. Chang, C.-H. Shin, Effect of an Alumina Phase on the Reductive Amination of 2-Propanol to Monoisopropylamine Over Ni/Al2O3, Catalysis Letters, 146 (2016) 811-819. [28] L. Ma, L. Yan, A.-H. Lu, Y. Ding, Effect of Re promoter on the structure and catalytic performance of Ni–Re/Al2O3 catalysts for the reductive amination of monoethanolamine, RSC Advances, 8 (2018) 8152-8163. [29] C.-M. Chen, J.-M. Jehng, Amination application over nano-Mg–Ni hydrogen storage alloy catalysts, Applied Catalysis A: General, 267 (2004) 103-110. [30] H. Kimura, H. Taniguchi, Cu/Ni colloidal dispersions stabilised by calcium and barium stearates for the amination of oxo-alcohols, Catalysis letters, 40 (1996) 123-130. [31] K. Okuyama, I.W. Lenggoro, Preparation of nanoparticles via spray route, Chemical engineering science, 58 (2003) 537-547. [32] D.A. Firmansyah, S.-G. Kim, K.-S. Lee, R. Zahaf, Y.H. Kim, D. Lee, Microstructure-Controlled AerosolБ─⌠Gel Synthesis of ZnO Quantum Dots Dispersed in SiO2 Nanospheres, Langmuir, 28 (2012) 2890-2896. [33] D.S. Jung, S.B. Park, Y.C. Kang, Design of particles by spray pyrolysis and recent progress in its application, Korean Journal of Chemical Engineering, 27 (2010) 1621-1645. [34] A.K. Peterson, D.G. Morgan, S.E. Skrabalak, Aerosol synthesis of porous particles using simple salts as a pore template, Langmuir, 26 (2010) 8804-8809. [35] R.K. Pati, I.C. Lee, S. Hou, O. Akhuemonkhan, K.J. Gaskell, Q. Wang, A.I. Frenkel, D. Chu, L.G. Salamanca-Riba, S.H. Ehrman, Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction, ACS Appl Mater Interfaces, 1 (2009) 2624-2635. [36] I. Luisetto, S. Tuti, C. Battocchio, S. Lo Mastro, A. Sodo, Ni/CeO2–Al2O3 catalysts for the dry reforming of methane: The effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance, Applied Catalysis A: General, 500 (2015) 12-22. [37] A.J. Zhang, X.Y. Li, S.Y. Zhang, Z.K. Yu, X.M. Gao, X.R. Wei, Z.X. Wu, W.D. Wu, X.D. Chen, Spray-drying-assisted reassembly of uniform and large micro-sized MIL-101 microparticles with controllable morphologies for benzene adsorption, J Colloid Interf Sci, 506 (2017) 1-9. [38] Z.K. Yu, X.M. Gao, Y. Yao, X.C. Zhang, G.Q. Bian, W.D. Wu, X.D. Chen, W. Li, C. Selomulya, Z.X. Wu, D.Y. Zhao, Scalable synthesis of wrinkled mesoporous titania microspheres with uniform large micron sizes for efficient removal of Cr(VI), J Mater Chem A, 6 (2018) 3954-3966. [39] F.-C. Lee, Y.-F. Lu, F.-C. Chou, C.-F. Cheng, R.-M. Ho, D.-H. Tsai, Mechanistic Study of Gas-Phase Controlled Synthesis of Copper Oxide-Based Hybrid Nanoparticle for CO Oxidation, The Journal of Physical Chemistry C, 120 (2016) 13638-13648. [40] H.Y. Wang, G.Q. Jian, S. Yan, J.B. DeLisio, C. Huang, M.R. Zachariah, Electrospray Formation of Gelled Nano-Aluminum Microspheres with Superior Reactivity, Acs Appl Mater Inter, 5 (2013) 6797-6801. [41] H. Wang, G. Jian, W. Zhou, J.B. DeLisio, V.T. Lee, M.R. Zachariah, Metal lodate-Based Energetic Composites and Their Combustion and Biocidal Performance, Acs Appl Mater Inter, 7 (2015) 17363-17370. [42] A.B.D. Nandiyanto, K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges, Advanced Powder Technology, 22 (2011) 1-19. [43] Y. Nagai, T. Hirabayashi, K. Dohmae, N. Takagi, T. Minami, H. Shinjoh, S.i. Matsumoto, Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction, Journal of Catalysis, 242 (2006) 103-109. [44] T. Wang, Z. Yan, C. Michel, M. Pera-Titus, P. Sautet, Trends and Control in the Nitridation of Transition-Metal Surfaces, ACS Catalysis, 8 (2017) 63-68. [45] D.-H. Tsai, T.-J. Huang, Activity behavior of samaria-doped ceria-supported copper oxide catalyst and effect of heat treatments of support on carbon monoxide oxidation, Applied Catalysis A: General, 223 (2002) 1-9. [46] T.-J. Huang, D.-H. Tsai, CO oxidation behavior of copper and copper oxides, Catalysis Letters, 87 (2003) 173-178. [47] J.B. Wang, S.-C. Lin, T.-J. Huang, Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria, Applied Catalysis A: General, 232 (2002) 107-120. [48] J.B. Wang, D.-H. Tsai, T.-J. Huang, Synergistic Catalysis of Carbon Monoxide Oxidation over Copper Oxide Supported on Samaria-Doped Ceria, Journal of Catalysis, 208 (2002) 370-380. [49] Y.-F. Lu, F.-C. Chou, F.-C. Lee, C.-Y. Lin, D.-H. Tsai, Synergistic Catalysis of Methane Combustion Using Cu–Ce–O Hybrid Nanoparticles with High Activity and Operation Stability, The Journal of Physical Chemistry C, 120 (2016) 27389-27398. [50] W.T. Gibbons, T.H. Liu, K.J. Gaskell, G.S. Jackson, Characterization of palladium/copper/ceria electrospun fibers for water–gas shift catalysis, Applied Catalysis B: Environmental, 160-161 (2014) 465-479. [51] W.T. Gibbons, L.J. Venstrom, R.M. De Smith, J.H. Davidson, G.S. Jackson, Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting, Phys Chem Chem Phys, 16 (2014) 14271-14280. [52] A. Tomer, Z. Yan, A. Ponchel, M. Pera-Titus, Mixed oxides supported low-nickel formulations for the direct amination of aliphatic alcohols with ammonia, Journal of Catalysis, 356 (2017) 133-146. [53] J. Johnson, G. Funk, Determination of Primary Aliphatic Amines by Acidimetric Salicylaldehyde Reaction, Analytical Chemistry, 28 (1956) 1977-1979. [54] H. Lei, Z. Song, D. Tan, X. Bao, X. Mu, B. Zong, E. Min, Preparation of novel Raney-Ni catalysts and characterization by XRD, SEM and XPS, Applied Catalysis A: General, 214 (2001) 69-76. [55] N. Wang, W. Qian, W. Chu, F. Wei, Crystal-plane effect of nanoscale CeO2 on the catalytic performance of Ni/CeO2 catalysts for methane dry reforming, Catalysis Science & Technology, 6 (2016) 3594-3605. [56] A. Baiker, D. Monti, Y.S. Fan, Deactivation of copper, nickel, and cobalt catalysts by interaction with aliphatic amines, Journal of Catalysis, 88 (1984) 81-88. [57] H. Kimura, S.-I. Tsutsumi, K. Tsukada, Reusability of the Cu/Ni-based colloidal catalysts stabilized by carboxylates of alkali-earth metals for the one-step amination of dodecyl alcohol and dimethylamine, Applied Catalysis A: General, 292 (2005) 281-286. [58] A. Pelter, R.M. Rosser, S. Mills, Reductive aminations of ketones and aldehydes using boraneБ─⌠pyridine, Journal of the Chemical Society, Perkin Transactions 1, (1984) 717-720. [59] K. Kim, Y. Choi, H. Lee, J.W. Lee, Y2O3-Inserted Co-Pd/zeolite catalysts for reductive amination of polypropylene glycol, Applied Catalysis A: General, 568 (2018) 114-122.
|