帳號:guest(3.144.118.236)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張宏彥
作者(外文):Chang, Hung-Yen
論文名稱(中文):製備混成式鎳金屬觸媒催化聚丙二醇的還原胺化反應與機制探討
論文名稱(外文):Understanding Reductive Amination of Polypropylene Glycol Using Nickel-Based Hybrid Catalyst
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De-Hao
口試委員(中文):汪上曉
呂世源
口試委員(外文):Wong, Shan-Hill
Lu, Shih-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032551
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:83
中文關鍵詞:鎳觸媒還原胺化反應機制
外文關鍵詞:NickelReductive aminationReaction mechanism
相關次數:
  • 推薦推薦:0
  • 點閱點閱:641
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究目的為以不同製備方式以及金屬比例進行材料合成,以提高PPG還原胺化的催化活性,再進行對還原胺化機制的了解。在材料合成的部分,第一部分使用初濕含浸法,可以藉由滴定不同比例與種類之前驅物溶液至載體上,來控制金屬在載體上的擔載量。第二部分使用氣溶膠法來製備複合式Ni-CeO2-Al2O3-NP。此方法利用氣相誘導自組裝(EISA)並以兩階段的熱處理(第一段以氮氣鍛燒,第二段以氫氣還原)來製備氣溶膠奈米觸媒。材料分析上使用掃描式電子顯微鏡(SEM)、比表面積測定儀(BET)、X光繞射分析儀(XRD)、高解析電子能譜儀(XPS)、熱重量分析儀(TGA)、化學吸附儀(TPD)以及感應耦合電漿原子發射光譜儀(ICP-OES)來進行還原胺化反應前後的材料分析。反應結果顯示,添加CeO2能有效地提升鎳觸媒的催化活性,最高能達到77%的轉化率。同時,鎳系觸媒對於一級胺的選擇率也都接近100%。觸媒表面鎳的氮化作用已被證實是影響轉化率的原因之一,而本研究中發現可透過添加CeO2能抑制此現象的發生。因此,相較於純鎳觸媒,Ni-CeO2-Al2O3觸媒也具有較高的穩定性。本研究透過合成不同比例的載體觸媒來進行測試,了解PPG還原胺化反應機制與觸媒失活原因,並期望能對於以非勻相觸媒生成聚醚胺的研究有所助益。
In this study, Ni-only and Ni-CeO2 particles decorated on the Al2O3 support material were prepared as the catalysts for an effective catalysis of reductive amination of polypropylene glycol (PPG). For the first section, samples of different loadings of Ni and Ce were decorated onto Al2O3 via incipient wetness impregnation followed by thermal treatment. For the second section, we demonstrated an aerosol-based approach to synthesize Ni-CeO2-Al2O3 hybrid nanostructure as a potent catalyst for the production of polyetheramine. This method combines a gas-phase evaporation-induced self-assembly with two-stage thermal treatments of the aerosol particles. The hybrid Ni-CeO2 nanoparticles (NPs) composed of ultrafine, homogeneously-distributed nanocrystallites of metallic Ni and ceria were uniformly decorated on the surface of Al2O3 nanoparticle cluster (NPC). Complementary characterization methods, including scanning electron microscopy, temperature-programmed reduction, CO-chemisorption, NH3 temperature-programmed desorption, inductively coupled plasma optical emission spectrometry, Brunner−Emmet−Teller surface area measurement and x-ray diffractometry, were employed to provide materials properties of the synthesized catalysts prior to and after the catalysis of reductive amination of PPG comprehensively. It was found that hybridization with CeO2 enhanced catalytic activity of the Ni catalyst. A high yield of ≈ 77% of the desired PEA and a high selectivity to primary amine (≈ 100%) achieved simultaneously by using Ni-CeO2-Al2O3 as catalyst. The surface nitridation of Ni catalyst was shown to be effectively suppressed via the incorporation with CeO2. In comparison to the Ni-only catalyst, an enhanced operation stability was observed over 2 or 3 cycles of activity tests by using the Ni-CeO2-Al2O3 as catalyst. The work demonstrates a facile route for the fabrication of hybrid catalysts on support material, paving the way for a rational improvement of heterogeneous metal-based catalysts. The mechanistic understanding presented in this study gives insight into the study of synergistic catalysis for a variety of reductive amination processes.
摘要.....2
Abstract.....3
誌謝辭.....5
目錄.....6
圖目錄.....9
表目錄.....12
第一章 緒論.....13
1-1 研究方向.....13
1.2 非勻相觸媒的應用.....15
1.3 載體觸媒的特性.....16
1.4 鎳系複合式觸媒對還原胺化反應的機制影響.....17
1.5 觸媒製備技術.....18
1.6 觸媒失活之影響.....20
1.7 實驗目的與方法.....21
第二章 實驗方法及儀器.....22
2.1 實驗藥品.....22
2.2 初濕含浸法觸媒之製備.....23
2.3 氣溶膠觸媒製備.....24
2.4 X光繞射分析儀(X-ray diffraction).....25
2.5 掃描式電子顯微鏡(Scanning Electron Microscopy).....26
2.6 高解析電子能譜儀(High resolution X-ray Photoelectron Spectrometer).....26
2.7 比表面積測定儀(Brunauer-Emmett-Teller).....27
2.8 熱重量分析儀 (TGA).....28
2.9 化學吸附儀(TPD).....28
2.10 感應耦合電漿原子發射光譜儀(ICP-OES).....30
2.11 還原胺化測試系統.....31
2.12 穩定性測試 (stability test).....32
2.13 轉化率(XPPG)與一級胺測定(ZPA).....32
第三章 實驗結果及分析.....34
3.1 以初濕含浸法製備觸媒進行還原胺化反應.....34
3.1.1 材料分析.....34
3.1.2 還原胺化測試.....45
3.1.3 穩定性測試.....50
3.2 以氣溶膠奈米粒子進行還原胺化反應.....52
3.2.1 材料分析.....52
3.2.2還原胺化測試.....58
3.3.3 穩定性測試.....64
第四章 結論.....67
第五章 未來展望.....69
5.1 氣溶膠奈米觸媒進行轉酯化反應.....69
5.2 材料修飾對反應活性之影響.....70
第六章 參考文獻.....74
[1] J.-M. Jehng, C.-M. Chen, Amination of polyethylene glycol to polyetheramine over the supported nickel catalysts, Catalysis letters, 77 (2001) 147-154.
[2] C.-Y. Lin, F.-C. Chou, D.-H. Tsai, Mechanistic understanding of surface reduction of Cu Ce O hybrid nanoparticles for catalytic methane combustion, Journal of the Taiwan Institute of Chemical Engineers, (2018).
[3] M.V.e. Klyuev, M.L.v. Khidekel', Catalytic amination of alcohols, aldehydes, and ketones, Russian Chemical Reviews, 49 (1980) 14-27.
[4] S. Bähn, S. Imm, L. Neubert, M. Zhang, H. Neumann, M. Beller, The Catalytic Amination of Alcohols, ChemCatChem, 3 (2011) 1853-1864.
[5] K.-i. Shimizu, K. Kon, W. Onodera, H. Yamazaki, J.N. Kondo, Heterogeneous Ni Catalyst for Direct Synthesis of Primary Amines from Alcohols and Ammonia, ACS Catalysis, 3 (2012) 112-117.
[6] J.H. Cho, J.H. Park, T.-S. Chang, G. Seo, C.-H. Shin, Reductive amination of 2-propanol to monoisopropylamine over Co/γ-Al2O3 catalysts, Applied Catalysis A: General, 417-418 (2012) 313-319.
[7] G. Sewell, C. O'Connor, E. Van Steen, Reductive amination of ethanol with silica-supported cobalt and nickel catalysts, Applied Catalysis A: General, 125 (1995) 99-112.
[8] D. Cheng, Z. Wang, Y. Xia, Y. Wang, W. Zhang, W. Zhu, Catalytic amination of diethylene glycol with tertiarybutylamine over Ni–Al2O3 catalysts with different Ni/Al ratios, RSC Advances, 6 (2016) 102373-102380.
[9] R.V. Jagadeesh, K. Murugesan, A.S. Alshammari, H. Neumann, M.-M. Pohl, J.r. Radnik, M. Beller, MOF-derived cobalt nanoparticles catalyze a general synthesis of amines, Science, 358 (2017) 326-332.
[10] A.Y.K. Leung, K. Hellgardt, K.K.M. Hii, Catalysis in Flow: Nickel-Catalyzed Synthesis of Primary Amines from Alcohols and NH3, ACS Sustainable Chemistry & Engineering, 6 (2018) 5479-5484.
[11] A.S. Dumon, T. Wang, J. Ibañez, A. Tomer, Z. Yan, R. Wischert, P. Sautet, M. Pera-Titus, C. Michel, Direct n-octanol amination by ammonia on supported Ni and Pd catalysts: activity is enhanced by “spectator” ammonia adsorbates, Catalysis Science & Technology, 8 (2018) 611-621.
[12] Y. Liu, K. Zhou, H. Shu, H. Liu, J. Lou, D. Guo, Z. Wei, X. Li, Switchable synthesis of furfurylamine and tetrahydrofurfurylamine from furfuryl alcohol over RANEY® nickel, Catalysis Science & Technology, 7 (2017) 4129-4135.
[13] D. Ruiz, A. Aho, P. Mäki-Arvela, N. Kumar, H. Oliva, D.Y. Murzin, Direct Amination of Dodecanol over Noble and Transition Metal Supported Silica Catalysts, Industrial & Engineering Chemistry Research, 56 (2017) 12878-12887.
[14] K.-i. Shimizu, Heterogeneous catalysis for the direct synthesis of chemicals by borrowing hydrogen methodology, Catalysis Science & Technology, 5 (2015) 1412-1427.
[15] C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, C. Sanchez, Aerosol route to functional nanostructured inorganic and hybrid porous materials, Adv Mater, 23 (2011) 599-623.
[16] S.K. Kim, H. Chang, H.D. Jang, Synthesis of micron-sized porous CeO2SiO2 composite particles for ultraviolet absorption, Advanced Powder Technology, 28 (2017) 406-410.
[17] H. Chang, H.D. Jang, Controlled synthesis of porous particles via aerosol processing and their applications, Advanced Powder Technology, 25 (2014) 32-42.
[18] K. Okuyama, M. Abdullah, I.W. Lenggoro, F. Iskandar, Preparation of functional nanostructured particles by spray drying, Advanced Powder Technology, 17 (2006) 587-611.
[19] F. Iskandar, H. Chang, K. Okuyama, Preparation of microencapsulated powders by an aerosol spray method and their optical properties, Advanced Powder Technology, 14 (2003) 349-367.
[20] D. Ruiz, A. Aho, T. Saloranta, K. Eränen, J. Wärnå, R. Leino, D.Y. Murzin, Direct amination of dodecanol with NH3 over heterogeneous catalysts. Catalyst screening and kinetic modelling, Chemical Engineering Journal, 307 (2017) 739-749.
[21] J. Xiaoyuan, L. Guanglie, Z. Renxian, M. Jianxin, C. Yu, Z. Xiaoming, Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts, Applied Surface Science, 173 (2001) 208-220.
[22] S. Li, M. Wen, H. Chen, Z. Ni, J. Xu, J. Shen, Amination of isopropanol to isopropylamine over a highly basic and active Ni/LaAlSiO catalyst, Journal of Catalysis, 350 (2017) 141-148.
[23] T.-Y. Liang, C.-Y. Lin, F.-C. Chou, M. Wang, D.-H. Tsai, Gas-Phase Synthesis of Ni–CeOx Hybrid Nanoparticles and Their Synergistic Catalysis for Simultaneous Reforming of Methane and Carbon Dioxide to Syngas, The Journal of Physical Chemistry C, 122 (2018) 11789-11798.
[24] H.L. Wang, H. Yeh, Y.C. Chen, Y.C. Lai, C.Y. Lin, K.Y. Lu, R.M. Ho, B.H. Li, C.H. Lin, D.H. Tsai, Thermal Stability of Metal-Organic Frameworks and Encapsulation of CuO Nanocrystals for Highly Active Catalysis, ACS Appl Mater Interfaces, 10 (2018) 9332-9341.
[25] L. Deng, J. Zhu, H. Chen, H. Wang, J. Shen, Microcalorimetric adsorption and infrared spectroscopic studies of supported nickel catalysts for the hydrogenation of diisopropylimine to diisopropylamine, Journal of Catalysis, 362 (2018) 35-45.
[26] E. Hong, S. Bang, J.H. Cho, K.D. Jung, C.-H. Shin, Reductive amination of isopropanol to monoisopropylamine over Ni-Fe/γ-Al2O3 catalysts: Synergetic effect of Ni-Fe alloy formation, Applied Catalysis A: General, 542 (2017) 146-153.
[27] J.H. Cho, S.H. An, T.-S. Chang, C.-H. Shin, Effect of an Alumina Phase on the Reductive Amination of 2-Propanol to Monoisopropylamine Over Ni/Al2O3, Catalysis Letters, 146 (2016) 811-819.
[28] L. Ma, L. Yan, A.-H. Lu, Y. Ding, Effect of Re promoter on the structure and catalytic performance of Ni–Re/Al2O3 catalysts for the reductive amination of monoethanolamine, RSC Advances, 8 (2018) 8152-8163.
[29] C.-M. Chen, J.-M. Jehng, Amination application over nano-Mg–Ni hydrogen storage alloy catalysts, Applied Catalysis A: General, 267 (2004) 103-110.
[30] H. Kimura, H. Taniguchi, Cu/Ni colloidal dispersions stabilised by calcium and barium stearates for the amination of oxo-alcohols, Catalysis letters, 40 (1996) 123-130.
[31] K. Okuyama, I.W. Lenggoro, Preparation of nanoparticles via spray route, Chemical engineering science, 58 (2003) 537-547.
[32] D.A. Firmansyah, S.-G. Kim, K.-S. Lee, R. Zahaf, Y.H. Kim, D. Lee, Microstructure-Controlled AerosolБ─⌠Gel Synthesis of ZnO Quantum Dots Dispersed in SiO2 Nanospheres, Langmuir, 28 (2012) 2890-2896.
[33] D.S. Jung, S.B. Park, Y.C. Kang, Design of particles by spray pyrolysis and recent progress in its application, Korean Journal of Chemical Engineering, 27 (2010) 1621-1645.
[34] A.K. Peterson, D.G. Morgan, S.E. Skrabalak, Aerosol synthesis of porous particles using simple salts as a pore template, Langmuir, 26 (2010) 8804-8809.
[35] R.K. Pati, I.C. Lee, S. Hou, O. Akhuemonkhan, K.J. Gaskell, Q. Wang, A.I. Frenkel, D. Chu, L.G. Salamanca-Riba, S.H. Ehrman, Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction, ACS Appl Mater Interfaces, 1 (2009) 2624-2635.
[36] I. Luisetto, S. Tuti, C. Battocchio, S. Lo Mastro, A. Sodo, Ni/CeO2–Al2O3 catalysts for the dry reforming of methane: The effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance, Applied Catalysis A: General, 500 (2015) 12-22.
[37] A.J. Zhang, X.Y. Li, S.Y. Zhang, Z.K. Yu, X.M. Gao, X.R. Wei, Z.X. Wu, W.D. Wu, X.D. Chen, Spray-drying-assisted reassembly of uniform and large micro-sized MIL-101 microparticles with controllable morphologies for benzene adsorption, J Colloid Interf Sci, 506 (2017) 1-9.
[38] Z.K. Yu, X.M. Gao, Y. Yao, X.C. Zhang, G.Q. Bian, W.D. Wu, X.D. Chen, W. Li, C. Selomulya, Z.X. Wu, D.Y. Zhao, Scalable synthesis of wrinkled mesoporous titania microspheres with uniform large micron sizes for efficient removal of Cr(VI), J Mater Chem A, 6 (2018) 3954-3966.
[39] F.-C. Lee, Y.-F. Lu, F.-C. Chou, C.-F. Cheng, R.-M. Ho, D.-H. Tsai, Mechanistic Study of Gas-Phase Controlled Synthesis of Copper Oxide-Based Hybrid Nanoparticle for CO Oxidation, The Journal of Physical Chemistry C, 120 (2016) 13638-13648.
[40] H.Y. Wang, G.Q. Jian, S. Yan, J.B. DeLisio, C. Huang, M.R. Zachariah, Electrospray Formation of Gelled Nano-Aluminum Microspheres with Superior Reactivity, Acs Appl Mater Inter, 5 (2013) 6797-6801.
[41] H. Wang, G. Jian, W. Zhou, J.B. DeLisio, V.T. Lee, M.R. Zachariah, Metal lodate-Based Energetic Composites and Their Combustion and Biocidal Performance, Acs Appl Mater Inter, 7 (2015) 17363-17370.
[42] A.B.D. Nandiyanto, K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges, Advanced Powder Technology, 22 (2011) 1-19.
[43] Y. Nagai, T. Hirabayashi, K. Dohmae, N. Takagi, T. Minami, H. Shinjoh, S.i. Matsumoto, Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction, Journal of Catalysis, 242 (2006) 103-109.
[44] T. Wang, Z. Yan, C. Michel, M. Pera-Titus, P. Sautet, Trends and Control in the Nitridation of Transition-Metal Surfaces, ACS Catalysis, 8 (2017) 63-68.
[45] D.-H. Tsai, T.-J. Huang, Activity behavior of samaria-doped ceria-supported copper oxide catalyst and effect of heat treatments of support on carbon monoxide oxidation, Applied Catalysis A: General, 223 (2002) 1-9.
[46] T.-J. Huang, D.-H. Tsai, CO oxidation behavior of copper and copper oxides, Catalysis Letters, 87 (2003) 173-178.
[47] J.B. Wang, S.-C. Lin, T.-J. Huang, Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria, Applied Catalysis A: General, 232 (2002) 107-120.
[48] J.B. Wang, D.-H. Tsai, T.-J. Huang, Synergistic Catalysis of Carbon Monoxide Oxidation over Copper Oxide Supported on Samaria-Doped Ceria, Journal of Catalysis, 208 (2002) 370-380.
[49] Y.-F. Lu, F.-C. Chou, F.-C. Lee, C.-Y. Lin, D.-H. Tsai, Synergistic Catalysis of Methane Combustion Using Cu–Ce–O Hybrid Nanoparticles with High Activity and Operation Stability, The Journal of Physical Chemistry C, 120 (2016) 27389-27398.
[50] W.T. Gibbons, T.H. Liu, K.J. Gaskell, G.S. Jackson, Characterization of palladium/copper/ceria electrospun fibers for water–gas shift catalysis, Applied Catalysis B: Environmental, 160-161 (2014) 465-479.
[51] W.T. Gibbons, L.J. Venstrom, R.M. De Smith, J.H. Davidson, G.S. Jackson, Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting, Phys Chem Chem Phys, 16 (2014) 14271-14280.
[52] A. Tomer, Z. Yan, A. Ponchel, M. Pera-Titus, Mixed oxides supported low-nickel formulations for the direct amination of aliphatic alcohols with ammonia, Journal of Catalysis, 356 (2017) 133-146.
[53] J. Johnson, G. Funk, Determination of Primary Aliphatic Amines by Acidimetric Salicylaldehyde Reaction, Analytical Chemistry, 28 (1956) 1977-1979.
[54] H. Lei, Z. Song, D. Tan, X. Bao, X. Mu, B. Zong, E. Min, Preparation of novel Raney-Ni catalysts and characterization by XRD, SEM and XPS, Applied Catalysis A: General, 214 (2001) 69-76.
[55] N. Wang, W. Qian, W. Chu, F. Wei, Crystal-plane effect of nanoscale CeO2 on the catalytic performance of Ni/CeO2 catalysts for methane dry reforming, Catalysis Science & Technology, 6 (2016) 3594-3605.
[56] A. Baiker, D. Monti, Y.S. Fan, Deactivation of copper, nickel, and cobalt catalysts by interaction with aliphatic amines, Journal of Catalysis, 88 (1984) 81-88.
[57] H. Kimura, S.-I. Tsutsumi, K. Tsukada, Reusability of the Cu/Ni-based colloidal catalysts stabilized by carboxylates of alkali-earth metals for the one-step amination of dodecyl alcohol and dimethylamine, Applied Catalysis A: General, 292 (2005) 281-286.
[58] A. Pelter, R.M. Rosser, S. Mills, Reductive aminations of ketones and aldehydes using boraneБ─⌠pyridine, Journal of the Chemical Society, Perkin Transactions 1, (1984) 717-720.
[59] K. Kim, Y. Choi, H. Lee, J.W. Lee, Y2O3-Inserted Co-Pd/zeolite catalysts for reductive amination of polypropylene glycol, Applied Catalysis A: General, 568 (2018) 114-122.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *