帳號:guest(3.15.22.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):游復任
作者(外文):Yu, Fu-Jen
論文名稱(中文):建構新型CRISPRi系統桿狀病毒抑制Noggin基因並促進脂肪間葉幹細胞骨分化
論文名稱(外文):CRISPR Interference(CRISPRi) for Suppressing Noggin to Promote Osteogenic Differentiation of Adipose-derived Mesenchymal Stem Cells
指導教授(中文):胡育誠
指導教授(外文):Hu, Yu-Chen
口試委員(中文):林進裕
李奎璋
口試委員(外文):Lin, Chin-Yu
Li, Kuei-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032550
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:65
中文關鍵詞:CRISPRi脂肪間葉幹細胞頭蓋骨修復骨分化BMP-2 信號通路Noggin
外文關鍵詞:CRISPRiASCCalvarial bone-defectOsteogenic differentiationBMP-2 pathwayNoggin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:51
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
大範圍的頭蓋骨缺陷在目前臨床骨科醫學上是一個難以克服的難題。目前人類第二骨形態發生蛋白質(bone morphogenetic protein-2, BMP-2)是公認最有效的骨修復生長因子,然而BMP-2在不同幹細胞誘導骨分化效果並不一致。BMP-2對於骨隨間葉幹細胞(bone mesenchymal stem cells, BMSCs)有良好的骨誘導效果,但是在脂肪間葉幹細胞(adipose-derived stem cells, ASCs) 中單一表現BMP-2仍無法有效的誘導脂肪間葉幹細胞進行骨分化。
先前研究發現Noggin是BMP-2的拮抗劑,會影響ASCs中BMP-Smad信號通路的骨誘導效果。當ASCs中的BMP-2蛋白提升時會產生負回饋機制表現Noggin蛋白,抑制BMP-Smad信號通路。CRISPRi為近年發展迅速之技術,利用失去活性的Cas9蛋白(dCas9蛋白)搭配具有專一性的sgRNA,抑制內源基因表現。本篇研究將結合長效表現BMP-2與CRISPRi系統,用於抑制ASCs中Noggin基因表現,並進一步促進ASCs進行硬骨分化。
經實驗驗證,CRISPRi系統在大鼠(Sprague-Dawley rats) ASCs中能夠有效率抑制Noggin表現量,搭配骨生長因子BMP-2能促進骨分化相關基因Runx2、ALP、OCN及OSX表現,並且在誘導骨分化14天後,可以觀察到實驗組有更多的鈣沉積。動物實驗中,將ASCs共轉導Bac-LEBW及Bac-Sa後貼附於細胞支架,植入大鼠大範圍頭蓋骨缺陷模型,於手術後四周及八周進行分析骨面積、骨體積及骨密度,與NC及Ø組皆有明顯提升。本研究證實長效表現BMP-2搭配CRISPRi系統能夠調控BMP-Smad pathway,誘導ASCs進行骨分化。在未來上可以嘗試運用CRISPR的優勢,建構多組sgRNA進行多基因調控,增加骨組織工程臨床上的運用。
Today critical-sized calvarial bone-defect repair remains a challenging task. Bone morphogenetic protein-2 (BMP-2) is the most potent osteoinductive factors, but is insufficient to potently promote adipose-derived mesenchymal stem cells (ASCs) osteogenesis, probably because Noggin is activated by BMP2 and antagonizes BMP2 during the culture of ASCs. CRISPR interference (CRISPRi) is an emerging technology that exploits deactivated Cas9 protein (dCas9) and single guide RNA for suppression of endogenous gene expression Here we hypothesized that CRISPRi can be harnessed to knock down Noggin expression so as to restore the BMP2 function and promote osteogenic differentiation of ASC.
We demonstrate that the espression of CRISPRi system in ASCs enable suppression of Noggin. We also versify that CRISPRi suppress Noggin expression stimulated the expression of osteogenic differentiation markers such as Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), Osteocalcin (OCN), Osterix(OSX) and Osteopontin(OPN) in ASCs and successfully drove ASCs fate towards the osteoblast. Implantation of the CRISPRi system-engineered ASCs successfully accelerated and improved calvarial critical-sized defect (6 mm) healing at 8 weeks after implantation.
These data altogether confirmed the potential of CRISPRi for suppression of Noggin and promotion of ASC differentiation and repair calvarial ctitical-size defect.
目錄
摘要 2
致謝 4
第一章 文獻回顧 7
1-1骨組織工程 7
1-1-1骨骼的簡介 7
1-1-2骨組織修復重建機制 8
1-1-3骨骼組織常見傷害 11
1-1-4骨組織工程背景 11
1-1-5骨組織工程的發展 12
1-2幹細胞在組織工程上的應用 14
1-3 BMP-Smad信號通路在骨組織工程上的應用 15
1-4基因治療 16
1-5桿狀病毒表現系統 17
1-6 重組酶系統 19
1-7 桿狀病毒在骨組織工程的應用 20
1-8 CRISPR/CRISPRi系統 21
1-9 Orthogonal CRISPR platform 23
1-10 研究動機 23
第二章 材料與方法 33
2-1重組桿狀病毒之建構與製備 33
2-1-1昆蟲細胞培養 33
2-1-2限制酶(DNA restriction enzyme)反應及接合酶(DNA ligase)反應 33
2-1-3建構重組表現載體(donor plasmid) 33
2-1-4 DNA引子黏合反應(primer annealing) 34
2-1-5 重組表現載體之轉置反應(transposition) (Bac-to-Bac系統) 35
2-1-7 重組bacmid之轉染反應(transfection) (製備P0病毒) 36
2-1-8 基因重組桿狀病毒放大培養 37
2-1-9超高速離心濃縮桿狀病毒 37
2-1-10桿狀病毒效價測定 38
2-2大鼠脂肪間葉幹細胞之分離與培養 38
2-3桿狀病毒轉導幹細胞之策略 39
2-4 酵素免疫分析法(ELISA) 39
2-5即時偵測同步定量聚合酶連鎖反應分析(qRT-PCR) 40
2-6茜紅素(Alizarin Red)染色分析 42
2-7 動物頭蓋骨缺陷植入所需之細胞轉導與載體製備 43
2-8大鼠頭蓋骨手術植入程序 43
2-9 電腦斷層掃描分析 44
2-10 組織免疫染色 44
第三章 結果 46
3-1 . Orthologues CRISPRi系統建構 46
3-2 CRISPRi系統抑制Noggin效率分析 47
3-3抑制Noggin對ASCs骨分化相關基因表現 48
3-4 抑制Noggin對ASCs成骨分化之分析 49
3-5 以Gelatin支架搭配ASCs修復大鼠大範圍頭蓋骨缺陷之分析 49
3-6 組織切片染色分析頭蓋骨組織新生 50
第四章 討論 57
第五章 參考文獻 60

1. Salgado AJ, Coutinho OP, Reis RL: Bone tissue engineering: state of the art and future trends. Macromolecular bioscience 2004, 4(8):743-765.
2. Chen B, Lin H, Wang J, Zhao Y, Wang B, Zhao W, Sun W, Dai J: Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2. Biomaterials 2007, 28(6):1027-1035.
3. Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA: Heparin-binding domain of fibrin (ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proceedings of the National Academy of Sciences 2013, 110(12):4563-4568.
4. Kisiel M, Klar AS, Ventura M, Buijs J, Mafina M-K, Cool SM, Hilborn J: Complexation and sequestration of BMP-2 from an ECM mimetic hyaluronan gel for improved bone formation. PLoS One 2013, 8(10):e78551.
5. Liao Y-H, Chang Y-H, Sung L-Y, Li K-C, Yeh C-L, Yen T-C, Hwang S-M, Lin K-J, Hu Y-C: Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials 2014, 35(18):4901-4910.
6. Yan J, Zhang C, Zhao Y, Cao C, Wu K, Zhao L, Zhang Y: Non-viral oligonucleotide antimiR-138 delivery to mesenchymal stem cell sheets and the effect on osteogenesis. Biomaterials 2014, 35(27):7734-7749.
7. Schmoekel HG, Weber FE, Schense JC, Grätz KW, Schawalder P, Hubbell JA: Bone repair with a form of BMP‐2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnology and bioengineering 2005, 89(3):253-262.
8. Yeung ML, Bennasser Y, Le SY, Jeang KT: siRNA, miRNA and HIV: promises and challenges. Cell research 2005, 15(11):935.
9. Carragee EJ, Chu G, Rohatgi R, Hurwitz EL, Weiner BK, Yoon ST, Comer G, Kopjar B: Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis. JBJS 2013, 95(17):1537-1545.
10. DeVine JG, Dettori JR, France JC, Brodt E, McGuire RA: The use of rhBMP in spine surgery: is there a cancer risk? Evidence-based spine-care journal 2012, 3(02):035-041.
11. Lin C-Y, Chang Y-H, Li K-C, Lu C-H, Sung L-Y, Yeh C-L, Lin K-J, Huang S-F, Yen T-C, Hu Y-C: The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair. Biomaterials 2013, 34(37):9401-9412.
12. Mizuno H, Tobita M, Orbay H, Uysal AC, Lu F: Adipose-derived stem cells as a novel tool for future regenerative medicine. In: Stem Cells and Cancer Stem Cells, Volume 12. Springer; 2014: 165-174.
13. Zhang W, Zhu C, Wu Y, Ye D, Wang S, Zou D, Zhang X, Kaplan DL, Jiang X: VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur Cell Mater 2014, 27(12):1.
14. Wang Y, Mostafa NZ, Hsu CY, Rose L, Kucharki C, Yan J, Jiang H, Uludağ H: Modification of human BMSC with nanoparticles of polymeric biomaterials and plasmid DNA for BMP-2 secretion. Journal of Surgical Research 2013, 183(1):8-17.
15. Mizrahi O, Sheyn D, Tawackoli W, Kallai I, Oh A, Su S, Da X, Zarrini P, Cook-Wiens G, Gazit D: BMP-6 is more efficient in bone formation than BMP-2 when overexpressed in mesenchymal stem cells. Gene therapy 2013, 20(4):370.
16. Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M: PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nature medicine 2014, 20(11):1270.
17. Urist MR: Bone: formation by autoinduction. Science 1965, 150(3698):893-899.
18. Chen D, Zhao M, Mundy GR: Bone morphogenetic proteins. Growth factors 2004, 22(4):233-241.
19. Bishop GB, Einhorn TA: Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. International orthopaedics 2007, 31(6):721-727.
20. Heldin C-H, Miyazono K, Ten Dijke P: TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 1997, 390(6659):465.
21. Gazzerro E, Du Z, Devlin R, Rydziel S, Priest L, Economides A, Canalis E: Noggin arrests stromal cell differentiation in vitro. Bone 2003, 32(2):111-119.
22. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G, Chang L, Chiang Y, Tolstoshev P: T lymphocyte-directed gene therapy for ADA− SCID: initial trial results after 4 years. Science 1995, 270(5235):475-480.
23. Fan J, Im CS, Guo M, Cui Z-K, Fartash A, Kim S, Patel N, Bezouglaia O, Wu BM, Wang C-Y: Enhanced Osteogenesis of Adipose‐Derived Stem Cells by Regulating Bone Morphogenetic Protein Signaling Antagonists and Agonists. Stem cells translational medicine 2016, 5(4):539-551.
24. Fan J, Park H, Tan S, Lee M: Enhanced osteogenesis of adipose derived stem cells with Noggin suppression and delivery of BMP-2. PLoS One 2013, 8(8):e72474.
25. Wan DC, Pomerantz JH, Brunet LJ, Kim J-B, Chou Y-F, Wu BM, Harland R, Blau HM, Longaker MT: Noggin suppression enhances in vitro osteogenesis and accelerates in vivo bone formation. Journal of Biological Chemistry 2007, 282(36):26450-26459.
26. Cao Y, Wang C, Zhang X, Xing G, Lu K, Gu Y, He F, Zhang L: Selective small molecule compounds increase BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Scientific reports 2014, 4:4965.
27. Severe N, Dieudonne F, Marie P: E3 ubiquitin ligase-mediated regulation of bone formation and tumorigenesis. Cell death & disease 2013, 4(1):e463.
28. Chen C, Uludağ H, Wang Z, Jiang H: Noggin suppression decreases BMP‐2‐induced osteogenesis of human bone marrow‐derived mesenchymal stem cells In Vitro. Journal of cellular biochemistry 2012, 113(12):3672-3680.
29. Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G, Panina P, Mazzolari E, Maggioni D, Rossi C, Servida P: Gene therapy in peripheral blood lymphocytes and bone marrow for ADA− immunodeficient patients. Science 1995, 270(5235):470-475.
30. Somia N, Verma IM: Gene therapy: trials and tribulations. Nature Reviews Genetics 2000, 1(2):91.
31. Pang M, Woodward AW, Agarwal V, Guan X, Ha M, Ramachandran V, Chen X, Triplett BA, Stelly DM, Chen ZJ: Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.). Genome biology 2009, 10(11):R122.
32. Somiari S, Glasspool-Malone J, Drabick JJ, Gilbert RA, Heller R, Jaroszeski MJ, Malone RW: Theory and in vivo application of electroporative gene delivery. Mol Ther 2000, 2(3):178-187.
33. Li S, Huang L: Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene therapy 2006, 13(18):1313.
34. Sinn P, Sauter S, McCray Jr P: Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors–design, biosafety, and production. Gene therapy 2005, 12(14):1089.
35. Jung Y, Bauer G, Nolta JA: Concise review: induced pluripotent stem cell‐derived mesenchymal stem cells: progress toward safe clinical products. Stem cells 2012, 30(1):42-47.
36. Nonnenmacher M, Weber T: Intracellular transport of recombinant adeno-associated virus vectors. Gene therapy 2012, 19(6):649.
37. Kotterman MA, Schaffer DV: Engineering adeno-associated viruses for clinical gene therapy. Nature Reviews Genetics 2014, 15(7):445.
38. J Airenne K, Makkonen K-E, J Mahonen A, Yla-Herttuala S: In vivo application and tracking of baculovirus. Current gene therapy 2010, 10(3):187-194.
39. Wang S, Balasundaram G: Potential cancer gene therapy by baculoviral transduction. Current gene therapy 2010, 10(3):214-225.
40. Ho YC, Chung YC, Hwang SM, Wang KC, Hu YC: Transgene expression and differentiation of baculovirus‐transduced human mesenchymal stem cells. The journal of gene medicine 2005, 7(7):860-868.
41. Lin C-Y, Lin K-J, Kao C-Y, Chen M-C, Lo W-H, Yen T-C, Chang Y-H, Hu Y-C: The role of adipose-derived stem cells engineered with the persistently expressing hybrid baculovirus in the healing of massive bone defects. Biomaterials 2011, 32(27):6505-6514.
42. Chen H-C, Sung L-Y, Lo W-H, Chuang C-K, Wang Y-H, Lin J-L, Hu Y-C: Combination of baculovirus-expressed BMP-2 and rotating-shaft bioreactor culture synergistically enhances cartilage formation. Gene therapy 2008, 15(4):309.
43. Hu Y-C, Yao K, Wu T-Y: Baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert review of vaccines 2008, 7(3):363-371.
44. Cheshenko N, Krougliak N, Eisensmith R, Krougliak V: A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus. Gene therapy 2001, 8(11):846.
45. Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B, Zehe C, Bode J: Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. Journal of molecular biology 2011, 407(2):193-221.
46. Turan S, Zehe C, Kuehle J, Qiao J, Bode J: Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene 2013, 515(1):1-27.
47. Nakano M, Odaka K, Takahashi Y, Ishimura M, Saito I, Kanegae Y: Production of viral vectors using recombinase-mediated cassette exchange. Nucleic acids research 2005, 33(8):e76-e76.
48. Sung L-Y, Chen C-L, Lin S-Y, Hwang S-M, Lu C-H, Li K-C, Lan AS, Hu Y-C: Enhanced and prolonged baculovirus-mediated expression by incorporating recombinase system and in cis elements: a comparative study. Nucleic acids research 2013, 41(14):e139-e139.
49. Ponte AL, Marais E, Gallay N, Langonné A, Delorme B, Hérault O, Charbord P, Domenech J: The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem cells 2007, 25(7):1737-1745.
50. Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, Liu X, Li Y, Ward CA, Melo LG: Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Molecular Therapy 2008, 16(3):571-579.
51. Gong J, Meng H-B, Hua J, Song Z-S, He ZG, Zhou B, Qian M-P: The SDF-1/CXCR4 axis regulates migration of transplanted bone marrow mesenchymal stem cells towards the pancreas in rats with acute pancreatitis. Molecular medicine reports 2014, 9(5):1575-1582.
52. Lapidot T, Kollet O: The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m null mice. Leukemia 2002, 16(10):1992.
53. Marquez-Curtis LA, Janowska-Wieczorek A: Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BioMed research international 2013, 2013.
54. Horvath P, Barrangou R: CRISPR/Cas, the immune system of bacteria and archaea. Science 2010, 327(5962):167-170.
55. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E: A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337(6096):816-821.
56. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471(7340):602.
57. Copeland MF, Politz MC, Pfleger BF: Application of TALEs, CRISPR/Cas and sRNAs as trans-acting regulators in prokaryotes. Current opinion in biotechnology 2014, 29:46-54.
58. Mali P, Esvelt KM, Church GM: Cas9 as a versatile tool for engineering biology. Nature methods 2013, 10(10):957.
59. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM: RNA-guided human genome engineering via Cas9. Science 2013, 339(6121):823-826.
60. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JJ, Joung JK: Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology 2013, 31(3):227.
61. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S: Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 2015, 81(7):2506-2514.
62. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA: Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339(6121):819-823.
63. Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T: Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Scientific reports 2014, 4:5400.
64. Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM: Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nature methods 2013, 10(11):1116.
65. Mitsunobu H, Teramoto J, Nishida K, Kondo A: Beyond native Cas9: manipulating genomic information and function. Trends in biotechnology 2017, 35(10):983-996.
66. Rock JM, Hopkins FF, Chavez A, Diallo M, Chase MR, Gerrick ER, Pritchard JR, Church GM, Rubin EJ, Sassetti CM: Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nature microbiology 2017, 2:16274.
67. Mali P, Esvelt KM, Church GM: Cas9 as a versatile tool for engineering biology. Nature methods 2013, 10(10):957-963.
68. Li K-C, Chang Y-H, Yeh C-L, Hu Y-C: Healing of osteoporotic bone defects by baculovirus-engineered bone marrow-derived MSCs expressing MicroRNA sponges. Biomaterials 2016, 74:155-166.
69. Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM: Cranial bone defects: current and future strategies. Neurosurgical focus 2010, 29(6):E8.
70. Gazzerro E, Gangji V, Canalis E: Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. The Journal of clinical investigation 1998, 102(12):2106-2114.
71. Truong VA, Hsu M-N, Nguyen K, Thi N, Lin M-W, Shen C-C, Lin C-Y, Hu Y-C: CRISPRai for simultaneous gene activation and inhibition to promote stem cell chondrogenesis and calvarial bone regeneration. Nucleic acids research 2019.
72. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DB, Kellner MJ, Regev A: RNA targeting with CRISPR–Cas13. Nature 2017, 550(7675):280.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *