帳號:guest(18.117.105.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林仁豊
作者(外文):Lin, Ren-Li
論文名稱(中文):開發克沙奇病毒A16型類病毒顆粒生產以及純化流程
論文名稱(外文):Development of Production and Purification Process for Coxsackievirus-A16 Virus-like Particles
指導教授(中文):胡育誠
指導教授(外文):Hu, Yu-Chen
口試委員(中文):林事曄
巫清安
口試委員(外文):Lin, Shih-Yeh
Wu, Chin-An
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032548
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:85
中文關鍵詞:克沙奇A16型類病毒顆粒疫苗純化流程桿狀病毒
外文關鍵詞:CVA16VLPvaccinepurificationbaculovirus
相關次數:
  • 推薦推薦:0
  • 點閱點閱:863
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
克沙奇病毒(coxsackievirus)盛行於東亞地區,屬於腸病毒不同的血清型,且為造成手口足症的主要病原體之一,感染幼童會造成嚴重神經性併發症甚至死亡,臺灣自1998年以來已爆發三次大規模腸病毒流行,皆有數百名重症案例,近年來,也有傳出因感染腸病毒重症而死亡的案例,因此克沙奇病毒的疫苗開發更顯迫切。過去實驗室使用重組桿狀病毒/昆蟲細胞表現系統生產克沙奇A16型類病毒顆粒疫苗,其外觀結構與真實病毒相似,然而在動物實驗中卻無法引發良好的抗病毒免疫反應,推測原因為所使用的建構病毒型別上的因素,以及純化製程上的問題。因此,本研究中我們建構新型別CVA16-Shzh 05的重組桿狀病毒來提升克沙奇A16型類病毒顆粒的品質,並以管柱層析純化方式純化所生產出來的類病毒顆粒,作為疫苗抗原注射小鼠。雖然在後續小鼠免疫實驗上有引發良好的血清IgG抗體效價,然而最後的中和抗體效價實驗,卻發現這些抗體不具有保護能力。為了進一步確認其具有中和抗體效價,我們期望以不同的克沙奇A16型類病毒顆粒的純化程序,來驗證其類病毒顆粒的蛋白組成和免疫性。後續實驗的規劃上,我們將利用不同純化方式取得類病毒顆粒作為疫苗抗原,探討不同純化程序取得的疫苗是否能引發抑制克沙奇A16型病毒感染的中和抗體,以應用在未來開發雙價疫苗的策略上。
Coxsackievirus A16 (CVA16) is one of the causative pathogens of hand, foot and mouth disease (HFMD), which leads to a major public health issue across the Asia-Pacific region. It mostly affects children and causes severe neurological complications and even death. Since 1998, there have outbreak of enterovirus infection in Taiwan, resulting in hundreds of cases with severe complications and entailing the need to develop vaccines against CVA16. Using the recombinant baculovirus/insect cell expression vector system, we have developed a CVA16 vaccine candidate based on virus-like particle (VLP) that resembles the authentic virus in size, shape and composition, but failed to elicit anti-viral immune response in animal model. In this study we used new viral strain of CVA16 to construct baculovirus and developed purification process in order to improve the VLP quality and efficacy. We next evaluated the immune responses elicited by the purified CVA16 VLP. With the improved purification process, we produced CVA16 VLP to develop a vaccine candidate against enterovirus infection. In the future, we will improve purification process and scale-up for production, also evaluate the immunogenicity of combined VLP antigens of different enterovirus and eventually prove the broad protection of the multiple VLP vaccine against viral challenge in mouse model.
摘要 I
Abctract II
目錄 III
圖表目錄 VI
第一章 文獻回顧 1
1-1 腸病毒 1
1-1-1 腸病毒的分類與疫情 1
1-2 克沙奇病毒A16型 2
1-2-1 克沙奇病毒A16型的流行疫情 2
1-2-2 克沙奇病毒A16型的結構 3
1-2-3 克沙奇病毒A16型的疫苗開發 4
1-3 類病毒顆粒疫苗 5
1-4 重組桿狀病毒/昆蟲細胞表現系統 7
1-4-1 桿狀病毒 7
1-4-2 桿狀病毒表現系統的發展 7
1-4-3 flashBACGOLD™重組桿狀病毒表現系統 8
1-5 研究動機 10
第二章 材料與方法 18
2-1 重組桿狀病毒的建構 18
2-1-1 flashBACGOLD™轉殖載體的建構 18
2-1-2 桿狀病毒基因體重組 18
2-1-3 重組桿狀病毒的放大 19
2-1-4 建構生產克沙奇A16型類病毒顆粒的重組桿狀病毒 19
2-1-5 重組桿狀病毒感染效價 20
2-2 細胞培養 20
2-2-1 昆蟲細胞培養 20
2-2-2 哺乳類動物細胞培養 21
2-3 克沙奇病毒A16型類病毒顆粒的生產 21
2-4 克沙奇病毒A16型類病毒顆粒的純化 22
2-4-1 切向流過濾濃縮 22
2-4-2 羥基磷灰石管柱層析法 23
2-4-3 分子篩管柱層析法 24
2-4-4 蔗糖連續式梯度離心 25
2-4-5 Capto 管柱系統層析法 26
2-5 克沙奇病毒A16型類病毒顆粒的分析 27
2-5-1 克沙奇病毒A16型病毒感染效價 27
2-5-2 克沙奇病毒A16型的生產 27
2-5-3 Bradford蛋白質濃度測定 28
2-5-4 SDS-PAGE蛋白質分離電泳 28
2-5-5 SDS-PAGE蛋白質染色 29
2-5-6 西方點墨法 29
2-6 小鼠免疫試驗 31
2-6-1 疫苗配方及製備 31
2-6-2 疫苗抗原接種 31
2-7 小鼠免疫分析 32
2-7-1 酵素連結免疫斑點分析法(ELISPOT) 32
2-7-2 血清IgG抗體效價 33
2-7-3 血清IgG抗體效價結果判讀 34
2-7-4 血清中和抗體效價 34
第三章 實驗結果 41
3-1 更改病毒株型別對於克沙奇病毒A16型類病毒顆粒之影響 41
3-2 以管柱層析法純化克沙奇病毒A16型類病毒顆粒 41
3-2-1 克沙奇病毒A16型類病毒顆粒生產與純化過程 42
3-3 克沙奇病毒A16型類病毒顆粒的小鼠免疫抗原性 44
3-3-1 酵素連結免疫斑點分析(ELISPOT) 44
3-3-2 免疫小鼠血清中抗克沙奇病毒A16型IgG結合抗體效價 45
3-3-3 免疫小鼠血清中和抗體效價 45
3-4 以蔗糖梯度離心法純化克沙其病毒A16型類病毒顆粒 46
3-4-1以High Five™昆蟲細胞生產類病毒顆粒的純化過程 47
3-4-2以Sf-9昆蟲細胞生產類病毒顆粒的純化過程 48
3-5 克沙奇病毒A16型類病毒顆粒的小鼠免疫抗原性 49
3-5-1 酵素連結免疫斑點分析(ELISPOT) 49
3-5-2 免疫小鼠血清中抗克沙奇病毒A16型IgG結合抗體效價 50
3-5-3 免疫小鼠血清中和抗體效價 51
3-6 以Capto 陰離子管柱層析法純化克沙奇病毒A16型類病毒顆粒 53
3-6-1 克沙奇病毒A16型類病毒顆粒生產與純化過程 53
3-7 克沙奇病毒A16型類病毒顆粒的小鼠免疫抗原性 55
3-7-1 酵素連結免疫斑點分析(ELISPOT) 55
3-7-2 免疫小鼠血清中抗克沙奇病毒A16型IgG結合抗體效價 56
3-7-3 免疫小鼠血清中和抗體效價 56
3-8 結論 58
第四章 討論 77
4-1 更改克沙奇A16型病毒株型別對小鼠免疫結果之影響 77
4-2 更改以Capto管柱層析純化方法對小鼠免疫結果之影響 78
第五章 未來展望 79
第六章 參考文獻 80
Ansardi DC, Morrow CD. 1995. Amino acid substitutions in the poliovirus maturation cleavage site affect assembly and result in accumulation of provirions. J Virol 69(3):1540-7.
Ansardi DC, Porter DC, Anderson MJ, Morrow CD. 1996. Poliovirus assembly and encapsidation of genomic RNA. Adv Virus Res 46:1-68.
Arnold E, Luo M, Vriend G, Rossmann MG, Palmenberg AC, Parks GD, Nicklin MJ, Wimmer E. 1987. Implications of the picornavirus capsid structure for polyprotein processing. Proc Natl Acad Sci U S A 84(1):21-5.
Basavappa R, Syed R, Flore O, Icenogle JP, Filman DJ, Hogle JM. 1994. Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 A resolution. Protein Sci 3(10):1651-69.
Bedard KM, Semler BL. 2004. Regulation of picornavirus gene expression. Microbes Infect 6(7):702-13.
Blomberg J, Lycke E, Ahlfors K, Johnsson T, Wolontis S, von Zeipel G. 1974. Letter: New enterovirus type associated with epidemic of aseptic meningitis and-or hand, foot, and mouth disease. Lancet 2(7872):112.
Buenz EJ, Howe CL. 2006. Picornaviruses and cell death. Trends Microbiol 14(1):28-36.
Buonaguro L, Visciano ML, Tornesello ML, Tagliamonte M, Biryahwaho B, Buonaguro FM. 2005. Induction of systemic and mucosal cross-clade neutralizing antibodies in BALB/c mice immunized with human immunodeficiency virus type 1 clade A virus-like particles administered by different routes of inoculation. J Virol 79(11):7059-67.
Cai Y, Liu Q, Huang X, Li D, Ku Z, Zhang Y, Huang Z. 2013. Active immunization with a Coxsackievirus A16 experimental inactivated vaccine induces neutralizing antibodies and protects mice against lethal infection. Vaccine 31(18):2215-21.
Caro V, Guillot S, Delpeyroux F, Crainic R. 2001. Molecular strategy for 'serotyping' of human enteroviruses. J Gen Virol 82(Pt 1):79-91.
Casal JI. 1999. Use of parvovirus-like particles for vaccination and induction of multiple immune responses. Biotechnol. Appl. Biochem. 29:141-150.
Chang JY, Chang CP, Tsai HH, Lee CD, Lian WC, Ih Jen S, Sai IH, Liu CC, Chou AH, Lu YJ and others. 2012. Selection and characterization of vaccine strain for Enterovirus 71 vaccine development. Vaccine 30(4):703-11.
Chong P, Guo MS, Lin FH, Hsiao KN, Weng SY, Chou AH, Wang JR, Hsieh SY, Su IJ, Liu CC. 2012. Immunological and biochemical characterization of coxsackie virus A16 viral particles. PLoS One 7(11):e49973.
Chou AH, Liu CC, Chang JY, Lien SP, Guo MS, Tasi HP, Hsiao KN, Liu SJ, Sia C, Wu SC and others. 2012. Immunological evaluation and comparison of different EV71 vaccine candidates. Clin Dev Immunol 2012:831282.
Chumakov M, Voroshilova M, Shindarov L, Lavrova I, Gracheva L, Koroleva G, Vasilenko S, Brodvarova I, Nikolova M, Gyurova S and others. 1979. Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch Virol 60(3-4):329-40.
Chung CY, Chen CY, Lin SY, Chung YC, Chiu HY, Chi WK, Lin YL, Chiang BL, Chen WJ, Hu YC. 2010. Enterovirus 71 virus-like particle vaccine: improved production conditions for enhanced yield. Vaccine 28(43):6951-7.
Chung YC, Huang JH, Lai CW, Sheng HC, Shih SR, Ho MS, Hu YC. 2006. Expression, purification and characterization of enterovirus-71 virus-like particles. World J Gastroenterol 12(6):921-7.
De Jesus NH. 2007. Epidemics to eradication: the modern history of poliomyelitis. Virol J 4:70.
Deibel R, Flanagan TD. 1979. Central nervous system infections. Etiologic and epidemiologic observations in New York State, 1976-1977. N Y State J Med 79(5):689-95.
Fan X, Jiang J, Liu Y, Huang X, Wang P, Liu L, Wang J, Chen W, Wu W, Xu B. 2013. Detection of human enterovirus 71 and Coxsackievirus A16 in an outbreak of hand, foot, and mouth disease in Henan Province, China in 2009. Virus Genes 46(1):1-9.
Gilbert SC. 2001. Virus-like particles as vaccine adjuvants. Mol Biotechnol 19(2):169-177.
Goto K, Sanefuji M, Kusuhara K, Nishimura Y, Shimizu H, Kira R, Torisu H, Hara T. 2009. Rhombencephalitis and coxsackievirus A16. Emerg Infect Dis 15(10):1689-91.
Hagiwara A, Tagaya I, Yoneyama T. 1978. Epidemic of hand, foot and mouth disease associated with enterovirus 71 infection. Intervirology 9(1):60-3.
Harmann CM, Schwimmbeck PL, Mertens T, Schulthesiss HP, Strauer BE. 1994. Identification of serotype-specific and nonserotype-specific B-Cell epitopes of coxsackie B virus using synthetic peptides. Virology. 200:381-389.
Hogle JM, Chow M, Filman DJ. 1985. Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229(4720):1358-65.
Hu YC, Hsu JT, Huang JH, Ho MS, Ho YC. 2003. Formation of enterovirus-like particle aggregates by recombinant baculoviruses co-expressing P1 and 3CD in insect cells. Biotechnol Lett 25(12):919-25.
Ishimaru Y, Nakano S, Yamaoka K, Takami S. 1980. Outbreaks of hand, foot, and mouth disease by enterovirus 71. High incidence of complication disorders of central nervous system. Arch Dis Child 55(8):583-8.
Kennett ML, Birch CJ, Lewis FA, Yung AP, Locarnini SA, Gust ID. 1974. Enterovirus type 71 infection in Melbourne. Bull World Health Organ 51(6):609-15.
Kitts PA, Possee RD. 1993. A method for producing recombinant baculovirus expression vectors at high frequency. Biotechniques 14(5):810-7.
Ku Z, Ye X, Huang X, Cai Y, Liu Q, Li Y, Su Z, Huang Z. 2013. Neutralizing antibodies induced by recombinant virus-like particles of enterovirus 71 genotype C4 inhibit infection at pre- and post-attachment steps. PLoS One 8(2):e57601.
Legay F, Leveque N, Gacouin A, Tattevin P, Bouet J, Thomas R, Chomelt JJ. 2007. Fatal coxsackievirus A-16 pneumonitis in adult. Emerg Infect Dis 13(7):1084-6.
Lenz P, Day PM, Pang YYS, Frye SA, Jensen PN, Lowy DR, Schiller JT. 2001. Papillomavirus-like particles induce acute activation of dendritic cells. J. Immunol. 166(9):5346-5355.
Li J, Huo X, Dai Y, Yang Z, Lei Y, Jiang Y, Li G, Zhan J, Zhan F. 2012. Evidences for intertypic and intratypic recombinant events in EV71 of hand, foot and mouth disease during an epidemic in Hubei Province, China, 2011. Virus Res 169(1):195-202.
Lin YL, Yu CI, Hu YC, Tsai TJ, Kuo YC, Chi WK, Lin AN, Chiang BL. 2012. Enterovirus type 71 neutralizing antibodies in the serum of macaque monkeys immunized with EV71 virus-like particles. Vaccine 30(7):1305-12.
Liu CC, Chang HW, Yang G, Chiang JR, Chow YH, Sai IH, Chang JY, Lin SC, Sia C, Hsiao CH and others. 2011a. Development of a quantitative enzyme linked immunosorbent assay for monitoring the Enterovirus 71 vaccine manufacturing process. J Virol Methods 176(1-2):60-8.
Liu Q, Yan K, Feng Y, Huang X, Ku Z, Cai Y, Liu F, Shi J, Huang Z. 2012. A virus-like particle vaccine for coxsackievirus A16 potently elicits neutralizing antibodies that protect mice against lethal challenge. Vaccine 30(47):6642-8.
Liu QW, Yan K, Feng YF, Cai YC, Huang Z. 2011b. Coxsackievirus A16-like particles elicit neutralizing antibody responses in mice. BMC Proc 5(Suppl 1):28.
Liu YV, Massare MJ, Barnard DL, Kort T, Nathan M, Wang L, Smith G. 2011c. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. Vaccine 29(38):6606-13.
Lokugamage KG, Yoshikawa-Iwata N, Ito N, Watts DM, Wyde PR, Wang N, Newman P, Kent Tseng CT, Peters CJ, Makino S. 2008. Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV. Vaccine 26(6):797-808.
Lu B, Huang Y, Huang L, Li B, Zheng Z, Chen Z, Chen J, Hu Q, Wang H. 2010. Effect of mucosal and systemic immunization with virus-like particles of severe acute respiratory syndrome coronavirus in mice. Immunology 130(2):254-61.
Luckow VA, Lee SC, Barry GF, Olins PO. 1993. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67(8):4566-79.
Mao Q, Li N, Yu X, Yao X, Li F, Lu F, Zhuang H, Liang Z, Wang J. 2012a. Antigenicity, animal protective effect and genetic characteristics of candidate vaccine strains of enterovirus 71. Arch Virol 157(1):37-41.
Mao Q, Wang Y, Gao R, Shao J, Yao X, Lang S, Wang C, Mao P, Liang Z, Wang J. 2012b. A neonatal mouse model of coxsackievirus a16 for vaccine evaluation. J Virol 86(22):11967-76.
McBurney SP, Ross TM. 2009. Human immunodeficiency virus-like particles with consensus envelopes elicited broader cell-mediated peripheral and mucosal immune responses than polyvalent and monovalent Env vaccines. Vaccine 27(32):4337-49.
Minor PD. 1992. The molecular biology of poliovaccines. J. Gen. Virol. 73:3065-3077.
Muir P, Kammerer U, Korn K, Mulders MN, Poyry T, Weissbrich B, Kandolf R, Cleator GM, van Loon AM. 1998. Molecular typing of enteroviruses: current status and future requirements. The European Union Concerted Action on Virus Meningitis and Encephalitis. Clin Microbiol Rev 11(1):202-27.
Nagy G, Takatsy S, Kukan E, Mihaly I, Domok I. 1982. Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978. Arch Virol 71(3):217-27.
Nasri D, Bouslama L, Pillet S, Bourlet T, Aouni M, Pozzetto B. 2007. Basic rationale, current methods and future directions for molecular typing of human enterovirus. Expert Rev Mol Diagn 7(4):419-34.
Noad R, Roy P. 2003. Virus-like particles as immunogens. Trends Microbiol 11(9):438-44.
O'Reilly D, L M, V L. 1992. Baculovirus expression vecter: a laboratory manual. New York: W.H. Freeman and Co.
Pallansch MA, Roos R. 2006. Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. Knipe DM HP, Griffin DE, Lamb RA, Martin MA, Roizman, B SSe, editors. Philadelphia: Lippincott Williams & Wilkins. 839 - 893 p.
Pan H, Zhu YF, Qi X, Zhang YJ, Li L, Deng F, Wu B, Wang SJ, Zhu FC, Wang H. 2009. [Analysis on the epidemiological and genetic characteristics of enterovirus type 71 and Coxsackie A16 virus infection in Jiangsu, China]. Zhonghua Liu Xing Bing Xue Za Zhi 30(4):339-43.
Pennock GD, Shoemaker C, Miller LK. 1984. Strong and regulated expression of Escherichia coli beta-galactosidase in insect cells with a baculovirus vector. Mol Cell Biol 4(3):399-406.
Ranganathan S, Singh S, Poh CL, Chow VT. 2002. The hand, foot and mouth disease virus capsid: sequence analysis and prediction of antigenic sites from homology modelling. Appl Bioinformatics 1(1):43-52.
Reimann BY, Zell R, Kandolf R. 1991. Mapping of a neutralizing antigenic site of coxsackie B4 by construction of an antigenic chimera. J. Virol. 65:3475-3480.
Roy P. 1996. Genetically engineered particulate virus-like structures and their use as vaccine delivery systems. Intervirology 39(1-2):62-71.
Shindarov LM, Chumakov MP, Voroshilova MK, Bojinov S, Vasilenko SM, Iordanov I, Kirov ID, Kamenov E, Leshchinskaya EV, Mitov G and others. 1979. Epidemiological, clinical, and pathomorphological characteristics of epidemic poliomyelitis-like disease caused by enterovirus 71. J Hyg Epidemiol Microbiol Immunol 23(3):284-95.
Sivasamugham LA, Cardosa MJ, Tan WS, Yusoff K. 2006. Recombinant Newcastle Disease virus capsids displaying enterovirus 71 VP1 fragment induce a strong immune response in rabbits. J Med Virol 78(8):1096-104.
Smith GE, Summers MD, Fraser MJ. 1983. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3(12):2156-65.
Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. 2010. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 10(11):778-90.
Stanway G, Brown F, Christian P, Hovi T, Hyypia T, King AMQ, Knowles NJ, Lemon SM, Minor PD, Pallansch MA and others. 2005. Picornaviridae. Fauquet CM MM, Maniloff J, Desselberger U, Ball LA (eds), editor. Amsterdam: Elsevier Academic Press. 757–778 p.
Tan CS, Cardosa MJ. 2007. High-titred neutralizing antibodies to human enterovirus 71 preferentially bind to the N-terminal portion of the capsid protein VP1. Arch Virol 152(6):1069-73.
Visciano ML, Diomede L, Tagliamonte M, Tornesello ML, Asti V, Bomsel M, Buonaguro FM, Lopalco L, Buonaguro L. 2011. Generation of HIV-1 Virus-Like Particles expressing different HIV-1 glycoproteins. Vaccine 29(31):4903-12.
Wang CY, Li Lu F, Wu MH, Lee CY, Huang LM. 2004. Fatal coxsackievirus A16 infection. Pediatr Infect Dis J 23(3):275-6.
Wetz K, Habermehl KO. 1982. Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of poliovirus. J. Gen. Virol. 59(Pt 2):397-401.
Wu PC, Huang LM, Kao CL, Fan TY, Cheng AL, Chang LY. 2010. An outbreak of coxsackievirus A16 infection: comparison with other enteroviruses in a preschool in Taipei. J Microbiol Immunol Infect 43(4):271-7.
Xu W, Liu CF, Yan L, Li JJ, Wang LJ, Qi Y, Cheng RB, Xiong XY. 2012. Distribution of enteroviruses in hospitalized children with hand, foot and mouth disease and relationship between pathogens and nervous system complications. Virol J 9:8.
Yang L, Song Y, Li X, Huang X, Liu J, Ding H, Zhu P, Zhou P. 2012. HIV-1 Virus Like Particles Produced by Stably Transfected Drosophila S2 cells - a Desirable Vaccine Component. J Virol.
Yao Q, Bu Z, Vzorov A, Yang C, Compans RW. 2003. Virus-like particle and DNA-based candidate AIDS vaccines. Vaccine 21(7-8):638-43.
Yen FB, Chang LY, Kao CL, Lee PI, Chen CM, Lee CY, Shao PL, Wang SC, Lu CY, Huang LM. 2009. Coxsackieviruses infection in northern Taiwan--epidemiology and clinical characteristics. J Microbiol Immunol Infect 42(1):38-46.
Yip CC, Lau SK, Zhou B, Zhang MX, Tsoi HW, Chan KH, Chen XC, Woo PC, Yuen KY. 2010. Emergence of enterovirus 71 "double-recombinant" strains belonging to a novel genotype D originating from southern China: first evidence for combination of intratypic and intertypic recombination events in EV71. Arch Virol 155(9):1413-24.
Yoke-Fun C, AbuBakar S. 2006. Phylogenetic evidence for inter-typic recombination in the emergence of human enterovirus 71 subgenotypes. BMC Microbiol 6:74.
Young KR, McBurney SP, Karkhanis LU, Ross TM. 2006. Virus-like particles: designing an effective AIDS vaccine. Methods 40(1):98-117.
Zhang HM, Li CR, Liu YJ, Liu WL, Fu D, Xu LM, Xie JJ, Tan Y, Wang H, Chen XC and others. 2009a. [To investigate pathogen of hand, foot and mouth disease in Shenzhen in 2008]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 23(5):334-6.
Zhang Y, Tan XJ, Wang HY, Yan DM, Zhu SL, Wang DY, Ji F, Wang XJ, Gao YJ, Chen L and others. 2009b. An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China. J Clin Virol 44(4):262-7.
Zhang Y, Wang D, Yan D, Zhu S, Liu J, Wang H, Zhao S, Yu D, Nan L, An J and others. 2010a. Molecular evidence of persistent epidemic and evolution of subgenotype B1 coxsackievirus A16-associated hand, foot, and mouth disease in China. J Clin Microbiol 48(2):619-22.
Zhang Y, Zhu Z, Yang W, Ren J, Tan X, Wang Y, Mao N, Xu S, Zhu S, Cui A and others. 2010b. An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of hand foot and mouth disease in Fuyang city of China. Virol J 7:94.
Zhao D, Sun B, Jiang H, Sun S, Kong FT, Ma Y, et al. Enterovirus71 virus-like particles produced from insect cells and purified by multistep chromatography elicit strong humoral immune responses in mice. Journal of Applied Microbiology 2015; 119:1196-205.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *