帳號:guest(18.116.40.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡濬宇
作者(外文):Tsai, Chun-Yu
論文名稱(中文):磷摻雜矽奈米線與淚滴狀磷化錫奈米粒子之合成與儲能應用
論文名稱(外文):Synthesis and Energy Storage Applications of P-Doped Silicon Nanowires and Teardrop-Shaped SnP0.94 Nanoparticles
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing-Yu
口試委員(中文):周更生
曾院介
口試委員(外文):Chou, Kan-Sen
Tseng, Yuan-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032547
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:64
中文關鍵詞:鉀離子電池鋰離子電池磷化錫超臨界溶液合成奈米線織布磷摻雜矽
外文關鍵詞:PIBsLIBsMetal phosphidessupercritical fluid-liquid-solid (SFLS) mechanismnanowires fabricdoped P silicon
相關次數:
  • 推薦推薦:0
  • 點閱點閱:156
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現今,穩定的摻雜製程都使用相當大的有毒和易燃反應物,使用氣 - 液 - 固(VLS)生長或激光催化生長(LCG),如SiH4,PH3和B2H6。取代具有安全性問題的傳統製程是無法避免的。在這項研究中,我們開發了一種簡便的一鍋溶液合成方法,通過超臨界流體 - 液 - 固(SFLS)一步合成出磷摻雜的矽奈米線,可以有效地避免危險的前驅物,並且能展現出優異的導電性。製作成奈米線織布在不含任何導電添加劑、銅箔和黏著劑的幫助下,依然能展現出優異的電池充放性能。例如,在0.1C的充放電速率下可以展現約為1500 mA h g-1的可逆電容量表現。另外在快充的表現下,透過 Si / CNT雙層奈米織布,它可以承受高電流密度( 1C )並保持1000次循環的穩定性能。最後拆開電池,我們能清楚地觀察到整體的形貌依然相當完整,而且磷也與反應前一樣依然均勻地分布在矽奈米線之中。
鉀離子電池(PIBs)作為替代鋰離子電池(LIBs)是相當具有潛力的,因為鉀是一種豐富的化學元素(地殼中含量約為2.09%),是鋰的1000倍以上,而且鉀的標準還原電位(-2.93V v.s Eo)接近鋰(-3.04V v.s Eo),可以使我們的平均工作電壓並不會與鋰離子電池相差太多。本研究利用簡單的一鍋法直接合成出鉍為晶種的淚滴狀磷化錫奈米粒子(BiSnP)應用於鉀離子電池中。與純磷相比,BiSnP可以表現出更好的電池循環效能。例如,BiSnP / C電極在500 mA g-1的電流密度下可以展現出高達200圈的循環性能,並且在7500 mA g-1的超高電流密度下依然擁有120 mA h g-1的平均比電容量。此外,由BiSnP / C和per四羧酸二酐(PTCDA)組成的鉀離子全電池也可以展現出相當好的循環壽命。為了使實驗更加真實,我們製作成軟包式的全電池,能表現出大約4.5 mA h的容量,而且也能成功驅動超過55顆的LED燈泡。
Today, the stable doping process all use considerably toxic and flammable reactants by using vapor–liquid–solid (VLS) growth or laser catalytic growth (LCG) such as SiH4, PH3 and B2H6. Alternative to replace the traditional process can't be avoided. Otherwise, the issue of security is bound to be discussed all the time.
In this study, we report a facile one-pot solution synthesis to produce phosphorus doped silicon nanowires. Avoiding dangerous reactants, we can also produce highly doped silicon nanowires by supercritical fluid-liquid-solid (SFLS) and it can exhibit superior electrical conductivity. The nanowires solution can easily drop on the Teflon mold to manufacture the nanowires fabric as negative electrode in the lithium-ion battery without conductivity additives, Cu foil and binder. The phosphorus doped silicon nanowires fabric possesses excellent electrochemical properties with reversible capacity of roughly 1500 mA g-1 at 0.1C and the cycle life can maintain stably without decay. The Si/CNT bilayer fabric even show great rate capability. It can endure high current density and keep stable performance for 1000 cycles. We disassembled the cell after 1000 cycles, and we can find that the overall structure is the same to the original appearance without fracture during the lithiation and delithiation.
Potassium-ion batteries (PIBs) are interesting as one of the alternative metal-ion battery systems to replace lithium-ion batteries (LIBs) because potassium is an abundant chemical element (2.09% in the Earth’s crust) which is close to sodium (2.36% in the Earth’s crust) and the standard reduction potential of K (-2.93V vs Eo) is close to lithium (-3.04V vs Eo) And then, the Stoke’s radius of K-ions is the smallest as compared to Li-ions and Na-ions in the electrode of PC.
Herein, we report a facile one-pot synthesis of Bi-seeded teardrop-shaped SnP0.94 nanoparticles (BiSnP) to apply for PIBs. Compared with the P, BiSnP can exhibit better
II
electronic conductivity and may show a synergistic effect that can comprehensively improve the stability of PIBs, in comparison to the single element structure. At the same time, with the wet ball-milling process, we can obtain outstanding electrochemical performance. The BiSnP/C electrode can show great cycling performance over 200 cycles at the current density of 500 mA h g-1 and exhibit average specific capacity of 120mA h g-1 at the current density of 7500 mA h g-1. This condition shows that the overall rate capability is quite stable.
In addition, the PIBs full cell, composed of BiSnP/C anode and a perylenetetracarboxylic dianhydride (PTCDA) cathode, can also show quite good rate capability and cycling life. In order to make the experiment more realistic, we even built a pouch-type battery, expressing a capacity of roughly 4.5 mA h. It can successfully light up more than 55 LED bulbs with red, yellow and green that need voltage ~ 3V.
中文摘要 I
Abstract II
Table of contents IV
List of Figure VI
List of Table IX
Chapter 1 Synthesis and energy storage applications of P-doped silicon nanowires 2
1.1 Introduction 2
1.2 Experimental Section 7
1.2.2 Materials 7
1.2.2 Red phosphorus nanoparticles synthesis 7
1.2.3 P doped Si Nanowires Synthesis 8
1.2.4 P Doped Si Nanowires Surface Passivation 8
1.2.5 Preparation of P Doped Si Nanowire and Si/CNT Nanowire Fabric Electrode 9
1.2.6 Lithium Ion Battery Assembly and Electrochemical Characterization 9
1.2.7 Experimental Analysis 10
1.3 Result and Discussion 11
1.3.1 Characterization of Si Doped P Nanowires 11
1.3.2 Electrochemical performance 15
1.4 Conclusion 24
1.5 Reference 25
Chapter 2 Synthesis and energy storage applications of 28
teardrop-shaped SnP0.94 nanoparticles 28
2.1 Introduction 28
2.2 Experimental Section 36
2.2.1 Materials 36
2.2.2 Preparation of 0.02M bismuth precursor solution 36
2.2.3 Synthesis of tin phosphide in supercritical fluid toluene in a batch 37
2.2.4 Fabrication of SnP nanoparticles /C electrode 37
2.2.5 Potassium Ion Battery Assembly and Electrochemical Characterization 38
2.2.7 Fabrication of thermal PTCDA /C electrode 38
2.2.9 Experimental Analysis 39
2.3 Result and Discussion 40
2.4 Conclusion 59
2.5 Reference 60
Chapter1
[1] S. Bangsaruntip, G. M. Cohen, and K. L. Saenger, "Nanowire field-effect transistors," ed: Google Patents, 2010.
[2] B. Polyakov et al., "High‐Density Arrays of Germanium Nanowire Photoresistors," vol. 18, no. 14, pp. 1812-1816, 2006.
[3] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. J. N. b. Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays," vol. 23, no. 10, p. 1294, 2005.
[4] J. She, S. Deng, N. Xu, R. Yao, and J. J. A. p. l. Chen, "Fabrication of vertically aligned Si nanowires and their application in a gated field emission device," vol. 88, no. 1, p. 013112, 2006.
[5] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. J. N. Tarascon, "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries," vol. 407, no. 6803, p. 496, 2000.
[6] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. J. S. Miyasaka, "Tin-based amorphous oxide: a high-capacity lithium-ion-storage material," vol. 276, no. 5317, pp. 1395-1397, 1997.
[7] C. K. Chan et al., "High-performance lithium battery anodes using silicon nanowires," in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group: World Scientific, 2011, pp. 187-191.
[8] W. Douglas C. Giancoli (1983). Handbook of Chemistry and Physics [64th. Edition, 1983-1984],Physics: Principles with Applications -- Fourth 4th Edition. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/rstiv.html
[9] S. Sze and J. J. S.-S. E. Irvin, "Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 K," vol. 11, no. 6, pp. 599-602, 1968.
[10] A. M. Morales and C. M. J. S. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires," vol. 279, no. 5348, pp. 208-211, 1998.
[11] X. Duan, J. Wang, and C. M. J. A. P. L. Lieber, "Synthesis and optical properties of gallium arsenide nanowires," vol. 76, no. 9, pp. 1116-1118, 2000.
[12] J. Hu, M. Ouyang, P. Yang, and C. M. J. N. Lieber, "Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires," vol. 399, no. 6731, p. 48, 1999.
[13] Y. Cui, X. Duan, J. Hu, and C. M. J. T. J. o. P. C. B. Lieber, "Doping and electrical transport in silicon nanowires," vol. 104, no. 22, pp. 5213-5216, 2000.
[14] R. Wagner and W. J. A. P. L. Ellis, "Vapor‐liquid‐solid mechanism of single crystal growth," vol. 4, no. 5, pp. 89-90, 1964.
[15] Y. Wu and P. J. J. o. t. A. C. S. Yang, "Direct observation of vapor− liquid− solid nanowire growth," vol. 123, no. 13, pp. 3165-3166, 2001.
[16] K.-K. Lew et al., "Structural and electrical properties of trimethylboron-doped silicon nanowires," vol. 85, no. 15, pp. 3101-3103, 2004.
[17] M. S. Seifner et al., "Direct Synthesis of Hyperdoped Germanium Nanowires," ACS Nano, vol. 12, no. 2, pp. 1236-1241, Feb 27 2018.
[18] E. Fahrenkrug, J. Gu, S. Jeon, P. A. Veneman, R. S. Goldman, and S. J. N. l. Maldonado, "Room-temperature epitaxial electrodeposition of single-crystalline germanium nanowires at the wafer scale from an aqueous solution," vol. 14, no. 2, pp. 847-852, 2014.
[19] E. Fahrenkrug, J. Biehl, and S. J. C. o. M. Maldonado, "Electrochemical liquid–liquid–solid crystal growth of germanium microwires on hard and soft conductive substrates at low temperature in aqueous solution," vol. 27, no. 9, pp. 3389-3396, 2015.
[20] A. M. Chockla et al., "Silicon nanowire fabric as a lithium ion battery electrode material," J Am Chem Soc, vol. 133, no. 51, pp. 20914-21, Dec 28 2011.
[21] W.-C. Chang, T.-L. Kao, Y. Lin, and H.-Y. J. J. o. M. C. A. Tuan, "A flexible all inorganic nanowire bilayer mesh as a high-performance lithium-ion battery anode," vol. 5, no. 43, pp. 22662-22671, 2017.
[22] E. Reverchon and R. J. T. J. o. S. F. Adami, "Nanomaterials and supercritical fluids," vol. 37, no. 1, pp. 1-22, 2006.

Chapter2
[1] Y. Liu, G. Zhou, K. Liu, and Y. J. A. o. c. r. Cui, "Design of complex nanomaterials for energy storage: past success and future opportunity," vol. 50, no. 12, pp. 2895-2905, 2017.
[2] N. Nitta, F. Wu, J. T. Lee, and G. J. M. t. Yushin, "Li-ion battery materials: present and future," vol. 18, no. 5, pp. 252-264, 2015.
[3] Z. Gao et al., "Promises, challenges, and recent progress of inorganic solid‐state electrolytes for all‐solid‐state lithium batteries," vol. 30, no. 17, p. 1705702, 2018.
[4] P. K. Nayak, L. Yang, W. Brehm, and P. J. A. C. I. E. Adelhelm, "From Lithium‐Ion to Sodium‐Ion Batteries: Advantages, Challenges, and Surprises," vol. 57, no. 1, pp. 102-120, 2018.
[5] J. C. Pramudita, D. Sehrawat, D. Goonetilleke, and N. J. A. E. M. Sharma, "An Initial Review of the Status of Electrode Materials for Potassium‐Ion Batteries," vol. 7, no. 24, p. 1602911, 2017.
[6] I. Sultana, M. M. Rahman, Y. Chen, and A. M. J. A. F. M. Glushenkov, "Potassium‐Ion Battery Anode Materials Operating through the Alloying–Dealloying Reaction Mechanism," vol. 28, no. 5, p. 1703857, 2018.
[7] J. Zheng et al., "Super Stable Antimony-carbon Composite Anodes for Potassium-ion Batteries," 2019.
[8] K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, and S. J. T. C. R. Komaba, "Towards K‐Ion and Na‐Ion Batteries as “Beyond Li‐Ion”," vol. 18, no. 4, pp. 459-479, 2018.
[9] W. Zhang, J. Mao, S. Li, Z. Chen, and Z. J. J. o. t. A. C. S. Guo, "Phosphorus-based alloy materials for advanced potassium-ion battery anode," vol. 139, no. 9, pp. 3316-3319, 2017.
[10] L. Fan, R. Ma, J. Wang, H. Yang, and B. J. A. M. Lu, "An Ultrafast and Highly Stable Potassium–Organic Battery," vol. 30, no. 51, p. 1805486, 2018.
[11] B. Ji, F. Zhang, N. Wu, and Y. J. A. E. M. Tang, "A Dual‐Carbon Battery Based on Potassium‐Ion Electrolyte," vol. 7, no. 20, p. 1700920, 2017.
[12] J. Yang et al., "Enhanced capacity and rate capability of nitrogen/oxygen dual‐doped hard carbon in capacitive potassium‐ion storage," vol. 30, no. 4, p. 1700104, 2018.
[13] Y. Xu et al., "Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries," vol. 9, 2018.
[14] W. Wang et al., "Short‐Range Order in Mesoporous Carbon Boosts Potassium‐Ion Battery Performance," vol. 8, no. 5, p. 1701648, 2018.
[15] Z. Yao et al., "Superior high-rate lithium-ion storage on Ti2Nb10O29 arrays via synergistic TiC/C skeleton and N-doped carbon shell," vol. 54, pp. 304-312, 2018.
[16] Y. Xie et al., "Ultra‐High Pyridinic N‐Doped Porous Carbon Monolith Enabling High‐Capacity K‐Ion Battery Anodes for Both Half‐Cell and Full‐Cell Applications," vol. 29, no. 35, p. 1702268, 2017.
[17] Z. Jian et al., "Hard–Soft Composite Carbon as a Long‐Cycling and High‐Rate Anode for Potassium‐Ion Batteries," vol. 27, no. 26, p. 1700324, 2017.
[18] Y. An, Y. Tian, L. Ci, S. Xiong, J. Feng, and Y. J. A. n. Qian, "Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries," vol. 12, no. 12, pp. 12932-12940, 2018.
[19] N. Xiao, W. D. McCulloch, and Y. J. J. o. t. A. C. S. Wu, "Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries," vol. 139, no. 28, pp. 9475-9478, 2017.
[20] H. Che et al., "Electrolyte design strategies and research progress for room-temperature sodium-ion batteries," vol. 10, no. 5, pp. 1075-1101, 2017.
[21] L. Fan et al., "Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer," vol. 14, no. 30, p. 1801806, 2018.
[22] J. Wang et al., "In-Situ Alloying Strategy for Exceptional Potassium Ion Batteries," 2019.
[23] L. Fan, K. Lin, J. Wang, R. Ma, and B. J. A. M. Lu, "A Nonaqueous Potassium‐Based Battery–Supercapacitor Hybrid Device," vol. 30, no. 20, p. 1800804, 2018.
[24] A. Ueda et al., "Electrochemical performance of all-solid-state lithium batteries with Sn4P3 negative electrode," vol. 244, pp. 597-600, 2013.
[25] Z. Huang, Z. Chen, Z. Chen, C. Lv, H. Meng, and C. J. A. n. Zhang, "Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis," vol. 8, no. 8, pp. 8121-8129, 2014.
[26] H. Zhang, D.-H. Ha, R. Hovden, L. F. Kourkoutis, and R. D. J. N. l. Robinson, "Controlled synthesis of uniform cobalt phosphide hyperbranched nanocrystals using tri-n-octylphosphine oxide as a phosphorus source," vol. 11, no. 1, pp. 188-197, 2010.
[27] F. Gillot, L. Monconduit, and M.-L. J. C. o. m. Doublet, "Electrochemical behaviors of binary and ternary manganese phosphides," vol. 17, no. 23, pp. 5817-5823, 2005.
[28] M. Heurlin et al., "Continuous gas-phase synthesis of nanowires with tunable properties," vol. 492, no. 7427, p. 90, 2012.
[29] R. L. Woo et al., "Kinetic control of self-catalyzed indium phosphide nanowires, nanocones, and nanopillars," vol. 9, no. 6, pp. 2207-2211, 2009.
[30] J. Bae, N. N. Kulkarni, J. P. Zhou, J. G. Ekerdt, and C.-K. J. J. o. C. G. Shih, "VLS growth of Si nanocones using Ga and Al catalysts," vol. 310, no. 20, pp. 4407-4411, 2008.
[31] A. Ameruddin, P. Caroff, H. Tan, C. Jagadish, and V. J. N. Dubrovskii, "Understanding the growth and composition evolution of gold-seeded ternary InGaAs nanowires," vol. 7, no. 39, pp. 16266-16272, 2015.
[32] W. C. Chang, J. H. Wu, K. T. Chen, and H. Y. J. A. S. Tuan, "Red Phosphorus Potassium‐Ion Battery Anodes," p. 1801354, 2019.
[33] T. Hosaka, K. Kubota, H. Kojima, and S. J. C. C. Komaba, "Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries," vol. 54, no. 60, pp. 8387-8390, 2018.
[34] K. Lei et al., "A Porous Network of Bismuth Used as the Anode Material for High‐Energy‐Density Potassium‐Ion Batteries," vol. 57, no. 17, pp. 4687-4691, 2018.
[35] L. Madec et al., "Paving the way for K-ion batteries: Role of electrolyte reactivity through the example of Sb-based electrodes," vol. 10, no. 40, pp. 34116-34122, 2018.
[36] L. Xue et al., "Low-cost high-energy potassium cathode," vol. 139, no. 6, pp. 2164-2167, 2017.
[37] I. Sultana, M. M. Rahman, T. Ramireddy, Y. Chen, and A. M. J. J. o. M. C. A. Glushenkov, "High capacity potassium-ion battery anodes based on black phosphorus," vol. 5, no. 45, pp. 23506-23512, 2017.
[38] G. Wang et al., "Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries," vol. 6, no. 47, pp. 24317-24323, 2018.
[39] X. Wu et al., "Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries," vol. 378, pp. 460-467, 2018.
[40] W. Zhang, W. K. Pang, V. Sencadas, and Z. J. J. Guo, "Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries," vol. 2, no. 8, pp. 1534-1547, 2018.
[41] Y. Xu et al., "Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries," vol. 9, no. 1, p. 1720, 2018.
[42] G. Ma, K. Huang, J.-S. Ma, Z. Ju, Z. Xing, and Q.-c. J. J. o. M. C. A. Zhuang, "Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries," vol. 5, no. 17, pp. 7854-7861, 2017.
[43] Q. Zhang et al., "Boosting the potassium storage performance of alloy‐based anode materials via electrolyte salt chemistry," vol. 8, no. 15, p. 1703288, 2018.
[44] P. Xiong, X. Zhao, and Y. J. C. Xu, "Nitrogen‐Doped Carbon Nanotubes Derived from Metal–Organic Frameworks for Potassium‐Ion Battery Anodes," vol. 11, no. 1, pp. 202-208, 2018.
[45] J. Bai et al., "One‐Step Construction of N, P‐Codoped Porous Carbon Sheets/CoP Hybrids with Enhanced Lithium and Potassium Storage," vol. 30, no. 35, p. 1802310, 2018.
[46] D. Liu et al., "Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries," vol. 52, pp. 1-10, 2018.
[47] W. Zhang et al., "Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries," vol. 53, pp. 967-974, 2018.
[48] D. Li et al., "Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries," 2019.
[49] X. Zhao et al., "SnP0. 94 nanoplates/graphene oxide composite for novel potassium-ion battery anode," vol. 370, pp. 677-683, 2019.
[50] W. Qiu, H. Xiao, Y. Li, X. Lu, and Y. J. S. Tong, "Nitrogen and Phosphorus Codoped Vertical Graphene/Carbon Cloth as a Binder‐Free Anode for Flexible Advanced Potassium Ion Full Batteries," vol. 15, no. 23, p. 1901285, 2019.


(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *