|
Chapter1 [1] S. Bangsaruntip, G. M. Cohen, and K. L. Saenger, "Nanowire field-effect transistors," ed: Google Patents, 2010. [2] B. Polyakov et al., "High‐Density Arrays of Germanium Nanowire Photoresistors," vol. 18, no. 14, pp. 1812-1816, 2006. [3] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. J. N. b. Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays," vol. 23, no. 10, p. 1294, 2005. [4] J. She, S. Deng, N. Xu, R. Yao, and J. J. A. p. l. Chen, "Fabrication of vertically aligned Si nanowires and their application in a gated field emission device," vol. 88, no. 1, p. 013112, 2006. [5] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. J. N. Tarascon, "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries," vol. 407, no. 6803, p. 496, 2000. [6] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. J. S. Miyasaka, "Tin-based amorphous oxide: a high-capacity lithium-ion-storage material," vol. 276, no. 5317, pp. 1395-1397, 1997. [7] C. K. Chan et al., "High-performance lithium battery anodes using silicon nanowires," in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group: World Scientific, 2011, pp. 187-191. [8] W. Douglas C. Giancoli (1983). Handbook of Chemistry and Physics [64th. Edition, 1983-1984],Physics: Principles with Applications -- Fourth 4th Edition. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/rstiv.html [9] S. Sze and J. J. S.-S. E. Irvin, "Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 K," vol. 11, no. 6, pp. 599-602, 1968. [10] A. M. Morales and C. M. J. S. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires," vol. 279, no. 5348, pp. 208-211, 1998. [11] X. Duan, J. Wang, and C. M. J. A. P. L. Lieber, "Synthesis and optical properties of gallium arsenide nanowires," vol. 76, no. 9, pp. 1116-1118, 2000. [12] J. Hu, M. Ouyang, P. Yang, and C. M. J. N. Lieber, "Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires," vol. 399, no. 6731, p. 48, 1999. [13] Y. Cui, X. Duan, J. Hu, and C. M. J. T. J. o. P. C. B. Lieber, "Doping and electrical transport in silicon nanowires," vol. 104, no. 22, pp. 5213-5216, 2000. [14] R. Wagner and W. J. A. P. L. Ellis, "Vapor‐liquid‐solid mechanism of single crystal growth," vol. 4, no. 5, pp. 89-90, 1964. [15] Y. Wu and P. J. J. o. t. A. C. S. Yang, "Direct observation of vapor− liquid− solid nanowire growth," vol. 123, no. 13, pp. 3165-3166, 2001. [16] K.-K. Lew et al., "Structural and electrical properties of trimethylboron-doped silicon nanowires," vol. 85, no. 15, pp. 3101-3103, 2004. [17] M. S. Seifner et al., "Direct Synthesis of Hyperdoped Germanium Nanowires," ACS Nano, vol. 12, no. 2, pp. 1236-1241, Feb 27 2018. [18] E. Fahrenkrug, J. Gu, S. Jeon, P. A. Veneman, R. S. Goldman, and S. J. N. l. Maldonado, "Room-temperature epitaxial electrodeposition of single-crystalline germanium nanowires at the wafer scale from an aqueous solution," vol. 14, no. 2, pp. 847-852, 2014. [19] E. Fahrenkrug, J. Biehl, and S. J. C. o. M. Maldonado, "Electrochemical liquid–liquid–solid crystal growth of germanium microwires on hard and soft conductive substrates at low temperature in aqueous solution," vol. 27, no. 9, pp. 3389-3396, 2015. [20] A. M. Chockla et al., "Silicon nanowire fabric as a lithium ion battery electrode material," J Am Chem Soc, vol. 133, no. 51, pp. 20914-21, Dec 28 2011. [21] W.-C. Chang, T.-L. Kao, Y. Lin, and H.-Y. J. J. o. M. C. A. Tuan, "A flexible all inorganic nanowire bilayer mesh as a high-performance lithium-ion battery anode," vol. 5, no. 43, pp. 22662-22671, 2017. [22] E. Reverchon and R. J. T. J. o. S. F. Adami, "Nanomaterials and supercritical fluids," vol. 37, no. 1, pp. 1-22, 2006.
Chapter2 [1] Y. Liu, G. Zhou, K. Liu, and Y. J. A. o. c. r. Cui, "Design of complex nanomaterials for energy storage: past success and future opportunity," vol. 50, no. 12, pp. 2895-2905, 2017. [2] N. Nitta, F. Wu, J. T. Lee, and G. J. M. t. Yushin, "Li-ion battery materials: present and future," vol. 18, no. 5, pp. 252-264, 2015. [3] Z. Gao et al., "Promises, challenges, and recent progress of inorganic solid‐state electrolytes for all‐solid‐state lithium batteries," vol. 30, no. 17, p. 1705702, 2018. [4] P. K. Nayak, L. Yang, W. Brehm, and P. J. A. C. I. E. Adelhelm, "From Lithium‐Ion to Sodium‐Ion Batteries: Advantages, Challenges, and Surprises," vol. 57, no. 1, pp. 102-120, 2018. [5] J. C. Pramudita, D. Sehrawat, D. Goonetilleke, and N. J. A. E. M. Sharma, "An Initial Review of the Status of Electrode Materials for Potassium‐Ion Batteries," vol. 7, no. 24, p. 1602911, 2017. [6] I. Sultana, M. M. Rahman, Y. Chen, and A. M. J. A. F. M. Glushenkov, "Potassium‐Ion Battery Anode Materials Operating through the Alloying–Dealloying Reaction Mechanism," vol. 28, no. 5, p. 1703857, 2018. [7] J. Zheng et al., "Super Stable Antimony-carbon Composite Anodes for Potassium-ion Batteries," 2019. [8] K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, and S. J. T. C. R. Komaba, "Towards K‐Ion and Na‐Ion Batteries as “Beyond Li‐Ion”," vol. 18, no. 4, pp. 459-479, 2018. [9] W. Zhang, J. Mao, S. Li, Z. Chen, and Z. J. J. o. t. A. C. S. Guo, "Phosphorus-based alloy materials for advanced potassium-ion battery anode," vol. 139, no. 9, pp. 3316-3319, 2017. [10] L. Fan, R. Ma, J. Wang, H. Yang, and B. J. A. M. Lu, "An Ultrafast and Highly Stable Potassium–Organic Battery," vol. 30, no. 51, p. 1805486, 2018. [11] B. Ji, F. Zhang, N. Wu, and Y. J. A. E. M. Tang, "A Dual‐Carbon Battery Based on Potassium‐Ion Electrolyte," vol. 7, no. 20, p. 1700920, 2017. [12] J. Yang et al., "Enhanced capacity and rate capability of nitrogen/oxygen dual‐doped hard carbon in capacitive potassium‐ion storage," vol. 30, no. 4, p. 1700104, 2018. [13] Y. Xu et al., "Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries," vol. 9, 2018. [14] W. Wang et al., "Short‐Range Order in Mesoporous Carbon Boosts Potassium‐Ion Battery Performance," vol. 8, no. 5, p. 1701648, 2018. [15] Z. Yao et al., "Superior high-rate lithium-ion storage on Ti2Nb10O29 arrays via synergistic TiC/C skeleton and N-doped carbon shell," vol. 54, pp. 304-312, 2018. [16] Y. Xie et al., "Ultra‐High Pyridinic N‐Doped Porous Carbon Monolith Enabling High‐Capacity K‐Ion Battery Anodes for Both Half‐Cell and Full‐Cell Applications," vol. 29, no. 35, p. 1702268, 2017. [17] Z. Jian et al., "Hard–Soft Composite Carbon as a Long‐Cycling and High‐Rate Anode for Potassium‐Ion Batteries," vol. 27, no. 26, p. 1700324, 2017. [18] Y. An, Y. Tian, L. Ci, S. Xiong, J. Feng, and Y. J. A. n. Qian, "Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries," vol. 12, no. 12, pp. 12932-12940, 2018. [19] N. Xiao, W. D. McCulloch, and Y. J. J. o. t. A. C. S. Wu, "Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries," vol. 139, no. 28, pp. 9475-9478, 2017. [20] H. Che et al., "Electrolyte design strategies and research progress for room-temperature sodium-ion batteries," vol. 10, no. 5, pp. 1075-1101, 2017. [21] L. Fan et al., "Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer," vol. 14, no. 30, p. 1801806, 2018. [22] J. Wang et al., "In-Situ Alloying Strategy for Exceptional Potassium Ion Batteries," 2019. [23] L. Fan, K. Lin, J. Wang, R. Ma, and B. J. A. M. Lu, "A Nonaqueous Potassium‐Based Battery–Supercapacitor Hybrid Device," vol. 30, no. 20, p. 1800804, 2018. [24] A. Ueda et al., "Electrochemical performance of all-solid-state lithium batteries with Sn4P3 negative electrode," vol. 244, pp. 597-600, 2013. [25] Z. Huang, Z. Chen, Z. Chen, C. Lv, H. Meng, and C. J. A. n. Zhang, "Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis," vol. 8, no. 8, pp. 8121-8129, 2014. [26] H. Zhang, D.-H. Ha, R. Hovden, L. F. Kourkoutis, and R. D. J. N. l. Robinson, "Controlled synthesis of uniform cobalt phosphide hyperbranched nanocrystals using tri-n-octylphosphine oxide as a phosphorus source," vol. 11, no. 1, pp. 188-197, 2010. [27] F. Gillot, L. Monconduit, and M.-L. J. C. o. m. Doublet, "Electrochemical behaviors of binary and ternary manganese phosphides," vol. 17, no. 23, pp. 5817-5823, 2005. [28] M. Heurlin et al., "Continuous gas-phase synthesis of nanowires with tunable properties," vol. 492, no. 7427, p. 90, 2012. [29] R. L. Woo et al., "Kinetic control of self-catalyzed indium phosphide nanowires, nanocones, and nanopillars," vol. 9, no. 6, pp. 2207-2211, 2009. [30] J. Bae, N. N. Kulkarni, J. P. Zhou, J. G. Ekerdt, and C.-K. J. J. o. C. G. Shih, "VLS growth of Si nanocones using Ga and Al catalysts," vol. 310, no. 20, pp. 4407-4411, 2008. [31] A. Ameruddin, P. Caroff, H. Tan, C. Jagadish, and V. J. N. Dubrovskii, "Understanding the growth and composition evolution of gold-seeded ternary InGaAs nanowires," vol. 7, no. 39, pp. 16266-16272, 2015. [32] W. C. Chang, J. H. Wu, K. T. Chen, and H. Y. J. A. S. Tuan, "Red Phosphorus Potassium‐Ion Battery Anodes," p. 1801354, 2019. [33] T. Hosaka, K. Kubota, H. Kojima, and S. J. C. C. Komaba, "Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries," vol. 54, no. 60, pp. 8387-8390, 2018. [34] K. Lei et al., "A Porous Network of Bismuth Used as the Anode Material for High‐Energy‐Density Potassium‐Ion Batteries," vol. 57, no. 17, pp. 4687-4691, 2018. [35] L. Madec et al., "Paving the way for K-ion batteries: Role of electrolyte reactivity through the example of Sb-based electrodes," vol. 10, no. 40, pp. 34116-34122, 2018. [36] L. Xue et al., "Low-cost high-energy potassium cathode," vol. 139, no. 6, pp. 2164-2167, 2017. [37] I. Sultana, M. M. Rahman, T. Ramireddy, Y. Chen, and A. M. J. J. o. M. C. A. Glushenkov, "High capacity potassium-ion battery anodes based on black phosphorus," vol. 5, no. 45, pp. 23506-23512, 2017. [38] G. Wang et al., "Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries," vol. 6, no. 47, pp. 24317-24323, 2018. [39] X. Wu et al., "Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries," vol. 378, pp. 460-467, 2018. [40] W. Zhang, W. K. Pang, V. Sencadas, and Z. J. J. Guo, "Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries," vol. 2, no. 8, pp. 1534-1547, 2018. [41] Y. Xu et al., "Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries," vol. 9, no. 1, p. 1720, 2018. [42] G. Ma, K. Huang, J.-S. Ma, Z. Ju, Z. Xing, and Q.-c. J. J. o. M. C. A. Zhuang, "Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries," vol. 5, no. 17, pp. 7854-7861, 2017. [43] Q. Zhang et al., "Boosting the potassium storage performance of alloy‐based anode materials via electrolyte salt chemistry," vol. 8, no. 15, p. 1703288, 2018. [44] P. Xiong, X. Zhao, and Y. J. C. Xu, "Nitrogen‐Doped Carbon Nanotubes Derived from Metal–Organic Frameworks for Potassium‐Ion Battery Anodes," vol. 11, no. 1, pp. 202-208, 2018. [45] J. Bai et al., "One‐Step Construction of N, P‐Codoped Porous Carbon Sheets/CoP Hybrids with Enhanced Lithium and Potassium Storage," vol. 30, no. 35, p. 1802310, 2018. [46] D. Liu et al., "Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries," vol. 52, pp. 1-10, 2018. [47] W. Zhang et al., "Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries," vol. 53, pp. 967-974, 2018. [48] D. Li et al., "Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries," 2019. [49] X. Zhao et al., "SnP0. 94 nanoplates/graphene oxide composite for novel potassium-ion battery anode," vol. 370, pp. 677-683, 2019. [50] W. Qiu, H. Xiao, Y. Li, X. Lu, and Y. J. S. Tong, "Nitrogen and Phosphorus Codoped Vertical Graphene/Carbon Cloth as a Binder‐Free Anode for Flexible Advanced Potassium Ion Full Batteries," vol. 15, no. 23, p. 1901285, 2019.
|