帳號:guest(18.227.134.45)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賈傳宇
作者(外文):Jia, Chuan-Yu
論文名稱(中文):設計環鉑高分子奈米顆粒之受體共聚單體來提升其於可見光催化產氫效率與穩定性
論文名稱(外文):Cycloplatinated Polymer Dots with Rational Design of Acceptor Co-monomers for Enhanced Visible-Light Photocatalytic Efficiency and Stability
指導教授(中文):周鶴修
指導教授(外文):Chou, Ho-Hsiu
口試委員(中文):李文亞
衛子健
口試委員(外文):Lee, Wen-Ya
Wei, Tzu-Chien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032543
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:140
中文關鍵詞:半導體高分子可見光光催化劑高分子奈米顆粒產氫
外文關鍵詞:SemiconductingpolymersPdotsPhotocatalystsVisible-light
相關次數:
  • 推薦推薦:0
  • 點閱點閱:301
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文中透過可見光作為驅動力使高分子分解水產生氫氣,我們提出了一系列環鉑化聚合物高分子奈米顆粒(Polymer dots),並且深入探討選擇受體共聚單體影響光催化活性的重要性。此系列環鉑共軛高分子的能隙為2.04~2.81eV,此區間中可以有效地吸收並利用可見光。此外,我們發現電子供應氮(sp3氮)和電子接受氮(sp2氮)引入受體共聚單體可以提高Pdots用於析氫的效率和穩定性是有效的策略。最活躍的PFTBTA-PtPy Polymer dots提供高達7.34±0.82 mmol h-1 g-1的析氫速率(HERs),在無甲醇溶液和可見光下具有31.54±1.39 mmol g-1的最佳氫氣產量驅動系統。 再經由MTT測定實驗證實,相對於將Pt直接添加到溶液系統中的常規方法,使用環鉑化Pdots作為光催化劑可以使毒性最小化。此外,可以通過再循環過程重新回收並製備環化的高分子奈米顆粒以產生氫氣。結果證明,使用環鉑化高分子奈米顆粒不僅可以提高產氫效率及其穩定性,還可以降低毒性,其對環境友善的特性且可以將豐富的太陽能轉換為有極高燃燒密度之氫能,無疑是綠色能源的一大進步。基於這項工作,可以理解選擇高分子奈米顆粒之受體共聚單體以實現光催化反應的高效率和長穩定性的明確設計策略。
By mimicking nature photosynthesis, a series of cycloplatinated polymer dots (Pdots) are presented and investigated the importance of selecting acceptor comonomers to affect the photocatalytic activity. It is found that the introduction of both electron-donating nitrogen (sp3 nitrogen) and electron-withdrawing nitrogen (sp2 nitrogen) into the acceptor comonomers is an effective strategy to enhance the efficiency and stability of Pdots for hydrogen evolution. The most active PFTBTA-PtPy Pdots provide the hydrogen evolution rates (HERs) up to 7.34 ± 0.82 mmol h–1 g–1 with excellent eventual hydrogen productions of 31.54 ± 1.39 mmol g-1 under a methanol-free solution and visible-light-driven system. MTT assay experiments confirm the use of the cycloplatinated Pdots as photocatalysts can minimize the toxicity, relative to the conventional approach that directly adding Pt into a solution system. Furthermore, the cylcoplatinated Pdot can be reactivated for hydrogen generation by the recycling process. The result proves that the use of cycloplatinated Pdots can not only enhance the HER efficiency and stability but also reduce the toxicity. Based on this work, a clear design strategy for the selection of acceptor comonomers of Pdots to achieve the high efficiency and long stability of photocatalytic reaction can be understood.
圖目錄-----7
第一章 緒論-----13
1-1氫能-----14
1-2、光催化分解水系統-----22
1-3、光催化分解水機制-----26
1-4、光催化水分解之影響變因-----29
第二章設計與合成高分子奈米顆粒及其於可見光催化產氫之應用-----33
2-1 研究前言與動機-----34
2-2 環鉑共軛高分子之合成與其鑑定-----49
2-3 新型環鉑共軛高分子之合成與其物理性質探討-----55
光物理性質探討-----55
瞬時放光衰退測量曲線-----66
熱物理性質探討-----68
最高填滿軌域(HOMO)-最低未填滿軌域(LUMO)之測量-----69
高分子奈米顆粒之粒徑與組成元素分析-----75
高分子材料之接觸角測量-----83
2-4 新型環鉑共軛高分子奈米顆粒之產氫系統應用-----87
結論-----95
未來展望-----97
實驗部分-----99
儀器與藥品-----109
參考文獻-----110
附錄-核磁共振光譜及凝膠滲透層析儀圖譜-----115

1. Turner, J.; Sverdrup, G.; Mann, M. K.; Maness, P.-C.; Kroposki, B.; Ghirardi, M.; Evans, R. J.; Blake, D., International Journal of Energy Research 2008, 32 (5), 379-407.
2. Balat, H.; Kırtay, E., International Journal of Hydrogen Energy 2010, 35 (14), 7416-7426.
3. Zhang, G.; Zhang, M.; Ye, X.; Qiu, X.; Lin, S.; Wang, X., Adv Mater 2014, 26 (5), 805-9.
4. Tang, S.; Liu, Y.; Lei, A., Chem 2018, 4 (1), 27-45.
5. Chiarello, G. L.; Aguirre, M. H.; Selli, E., Journal of Catalysis 2010, 273 (2), 182-190.
6. Dante, R., International Journal of Hydrogen Energy 2005, 30 (4), 421-424.
7. Mattos, L.; Noronha, F., Journal of Catalysis 2005, 233 (2), 453-463.
8. Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J.; Song, D.; Liu, Z.-S.; Wang, H.; Shen, J., Journal of Power Sources 2007, 165 (2), 739-756.
9. Steinfeld, A., Solar Energy 2005, 78 (5), 603-615.
10. A. Fujishima, K. Honda, Nature, 1972, 238, 37–38.
11. Wang, M.; Chen, L.; Sun, L., Energy & Environmental Science 2012, 5 (5).
12. Thoi, V. S.; Sun, Y.; Long, J. R.; Chang, C. J., Chem Soc Rev 2013, 42 (6), 2388-400.
13. Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M., Angew Chem Int Ed Engl 2011, 50 (32), 7238-66.
14. Armaroli, N.; Balzani, V., Angewandte Chemie International Edition 2007, 46 (1-2), 52-66.
15. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G., Chem Rev 2010, 110 (11), 6474-502.
16. Bockris, J. O. M.; Potter, E. C., The Journal of Chemical Physics 1952, 20 (4), 614-628.
17. Tran, P. D.; Tran, T. V.; Orio, M.; Torelli, S.; Truong, Q. D.; Nayuki, K.; Sasaki, Y.; Chiam, S. Y.; Yi, R.; Honma, I.; Barber, J.; Artero, V., Nat Mater 2016, 15 (6), 640-6.
18. Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A., Energy Environ. Sci. 2014, 7 (7), 2255-2260.
19. Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W.; Xie, Y., Adv Mater 2013, 25 (40), 5807-13.
20. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jorgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Norskov, J. K., J Am Chem Soc 2005, 127 (15), 5308-9.
21. Merki, D.; Fierro, S.; Vrubel, H.; Hu, X., Chem. Sci. 2011, 2 (7), 1262-1267.
22. Ambrosi, A.; Sofer, Z.; Pumera, M., Chem Commun (Camb) 2015, 51 (40), 8450-3.
23. Vrubel, H.; Merki, D.; Hu, X., Energy & Environmental Science 2012, 5 (3).
24. Gao, M. R.; Chan, M. K.; Sun, Y., Nat Commun 2015, 6, 7493.
25. Gao, L.; Cui, Y.; Wang, J.; Cavalli, A.; Standing, A.; Vu, T. T.; Verheijen, M. A.; Haverkort, J. E.; Bakkers, E. P.; Notten, P. H., Nano Lett 2014, 14 (7), 3715-9.
26. Alarawi, A.; Ramalingam, V.; Fu, H. C.; Varadhan, P.; Yang, R.; He, J. H., Opt Express 2019, 27 (8), A352-A363.
27. Zong, X.; Yan, H.; Wu, G.; Ma, G.; Wen, F.; Wang, L.; Li, C., J Am Chem Soc 2008, 130 (23), 7176-7.
28. Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H., J Am Chem Soc 2011, 133 (19), 7296-9.
29. Zhu, B.; Lin, B.; Zhou, Y.; Sun, P.; Yao, Q.; Chen, Y.; Gao, B., J. Mater. Chem. A 2014, 2 (11), 3819-3827.
30. Wang, X.; Liu, G.; Chen, Z. G.; Li, F.; Wang, L.; Lu, G. Q.; Cheng, H. M., Chem Commun (Camb) 2009, (23), 3452-4.
31. Wang, Z.; Hou, J.; Yang, C.; Jiao, S.; Zhu, H., Chem Commun (Camb) 2014, 50 (14), 1731-4.
32. Andrew Frame, F.; Carroll, E. C.; Larsen, D. S.; Sarahan, M.; Browning, N. D.; Osterloh, F. E., Chem Commun (Camb) 2008, (19), 2206-8.
33. Shi, R.; Cao, Y.; Bao, Y.; Zhao, Y.; Waterhouse, G. I. N.; Fang, Z.; Wu, L. Z.; Tung, C. H.; Yin, Y.; Zhang, T., Adv Mater 2017, 29 (27).
34. Li, Z. J.; Wang, J. J.; Li, X. B.; Fan, X. B.; Meng, Q. Y.; Feng, K.; Chen, B.; Tung, C. H.; Wu, L. Z., Adv Mater 2013, 25 (45), 6613-8.
35. Chiarello, G. L.; Dozzi, M. V.; Selli, E., Journal of Energy Chemistry 2017, 26 (2), 250-258.
36. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K., Renewable and Sustainable Energy Reviews 2007, 11 (3), 401-425.
37. Morales-Guio, C. G.; Liardet, L.; Mayer, M. T.; Tilley, S. D.; Gratzel, M.; Hu, X., Angew Chem Int Ed Engl 2015, 54 (2), 664-7.
38. Chen, J.; Shen, S.; Guo, P.; Wang, M.; Wu, P.; Wang, X.; Guo, L., Applied Catalysis B: Environmental 2014, 152-153, 335-341.
39. Han, Q.; Wang, B.; Gao, J.; Cheng, Z.; Zhao, Y.; Zhang, Z.; Qu, L., ACS Nano 2016, 10 (2), 2745-51.
40. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E., J Am Chem Soc 2013, 135 (25), 9267-70.
41. Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E., Angewandte Chemie International Edition 2014, 53 (21), 5427-5430.
42. Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X., Chemical Science 2012, 3 (8). 2515-2525
43. . S. Yanagida, A. Kabumoto, K. Mizumoto, C. Pac, K. Yoshino, J. Chem. Soc., Chem. Commun., 1985, 474−475
44. Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M., Nat Mater 2009, 8 (1), 76-80.
45. Schwab, M. G.; Hamburger, M.; Feng, X.; Shu, J.; Spiess, H. W.; Wang, X.; Antonietti, M.; Mullen, K., Chem Commun (Camb) 2010, 46 (47), 8932-4.
46. Song, L.; Tu, C.; Shi, Y.; Qiu, F.; He, L.; Jiang, Y.; Zhu, Q.; Zhu, B.; Yan, D.; Zhu, X., Macromol Rapid Commun 2010, 31 (5), 443-8.
47. Maruyama, T.; Yamamoto, T., The Journal of Physical Chemistry B 1997, 101 (19), 3806-3810.
48. Bhunia, M. K.; Melissen, S.; Parida, M. R.; Sarawade, P.; Basset, J.-M.; Anjum, D. H.; Mohammed, O. F.; Sautet, P.; Le Bahers, T.; Takanabe, K., Chemistry of Materials 2015, 27 (24), 8237-8247.
49. Ham, Y.; Maeda, K.; Cha, D.; Takanabe, K.; Domen, K., Chem Asian J 2013, 8 (1), 218-24.
50. Savateev, A.; Pronkin, S.; Epping, J. D.; Willinger, M. G.; Wolff, C.; Neher, D.; Antonietti, M.; Dontsova, D., ChemCatChem 2017, 9 (1), 167-174.
51. Kailasam, K.; Schmidt, J.; Bildirir, H.; Zhang, G.; Blechert, S.; Wang, X.; Thomas, A., Macromol Rapid Commun 2013, 34 (12), 1008-13.
52. Tang, T.; Chen, X.; Meng, X.; Chen, H.; Ding, Y., Angew Chem Int Ed Engl 2005, 44 (10), 1517-20.
53. Zhang, K.; Kopetzki, D.; Seeberger, P. H.; Antonietti, M.; Vilela, F., Angew Chem Int Ed Engl 2013, 52 (5), 1432-6.
54. Woods, D. J.; Sprick, R. S.; Smith, C. L.; Cowan, A. J.; Cooper, A. I., Advanced Energy Materials 2017, 7 (22), 369-394
55. Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J., Adv Mater 2012, 24 (2), 229-51.
56. Chen, X.; Shen, S.; Guo, L.; Mao, S. S., Chem Rev 2010, 110 (11), 6503-70.
57. Aydın, R.; Köleli, F., Progress in Organic Coatings 2006, 56 (1), 76-80.
58. Jing, D.; Zhang, Y.; Guo, L., Chemical Physics Letters 2005, 415 (1-3), 74-78.
59. Wang, M.; Li, Z.; Wu, Y.; Ma, J.; Lu, G., Journal of Catalysis 2017, 353, 162-170.
60. Li, Y. H.; Xing, J.; Chen, Z. J.; Li, Z.; Tian, F.; Zheng, L. R.; Wang, H. F.; Hu, P.; Zhao, H. J.; Yang, H. G., Nat Commun 2013, 4, 2500.
61. A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev., 1995, 95, 735–758.
62. Li, C.; Yuan, J.; Han, B.; Shangguan, W., International Journal of Hydrogen Energy 2011, 36 (7), 4271-4279.
63. R. I. Bickley, T. Gonzalez-Carreno, J. S. Lee, L. Palmisano, R. J. D. Tilley, J. Solid State Chem., 1991, 92, 178.
64. A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev., 1995, 95, 735–758.
65. Su, R.; Bechstein, R.; Kibsgaard, J.; Vang, R. T.; Besenbacher, F., Journal of Materials Chemistry 2012, 22 (45).
66. Sen, B.; Kuzu, S.; Demir, E.; Akocak, S.; Sen, F., International Journal of Hydrogen Energy 2017, 42 (36), 23284-23291.
67. Yu, X.; Zhao, Z.; Sun, D.; Ren, N.; Ding, L.; Yang, R.; Ji, Y.; Li, L.; Liu, H., Chem Commun (Camb) 2018, 54 (47), 6056-6059.
68. Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmekova, E.; Asefa, T., Angew Chem Int Ed Engl 2014, 53 (17), 4372-6.
69. Bledowski, M.; Wang, L.; Ramakrishnan, A.; Khavryuchenko, O. V.; Khavryuchenko, V. D.; Ricci, P. C.; Strunk, J.; Cremer, T.; Kolbeck, C.; Beranek, R., Phys Chem Chem Phys 2011, 13 (48), 21511-9.
70. Li, L.; Hadt, R. G.; Yao, S.; Lo, W.-Y.; Cai, Z.; Wu, Q.; Pandit, B.; Chen, L. X.; Yu, L., Chemistry of Materials 2016, 28 (15), 5394-5399.
71. Sprick, R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I., J Am Chem Soc 2015, 137 (9), 3265-70. Li, L.; Hadt, R. G.; Yao, S.; Lo, W.-Y.; Cai, Z.; Wu, Q.; Pandit, B.; Chen, L. X.; Yu, L., Chemistry of Materials 2016, 28 (15), 5394-5399
72. Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N. J.; Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I., Angew Chem Int Ed Engl 2016, 55 (5), 1792-6.
73. Li, L.; Cai, Z.; Wu, Q.; Lo, W. Y.; Zhang, N.; Chen, L. X.; Yu, L., J Am Chem Soc 2016, 138 (24), 7681-6.
74. Wang, L.; Fernandez-Teran, R.; Zhang, L.; Fernandes, D. L.; Tian, L.; Chen, H.; Tian, H., Angew Chem Int Ed Engl 2016, 55 (40), 12306-10.
75. Fernández-Sánchez, C.; McNeil, C. J.; Rawson, K., TrAC Trends in Analytical Chemistry 2005, 24 (1), 37-48.
76. Zhang, Y.; Ye, F.; Sun, W.; Yu, J.; Wu, I. C.; Rong, Y.; Zhang, Y.; Chiu, D. T., Chem Sci 2015, 6 (3), 2102-2109.
77. Tang, Y.; Chen, H.; Chang, K.; Liu, Z.; Wang, Y.; Qu, S.; Xu, H.; Wu, C., ACS Appl Mater Interfaces 2017, 9 (4), 3419-3431.
78. Chen, H.; Chang, K.; Men, X.; Sun, K.; Fang, X.; Ma, C.; Zhao, Y.; Yin, S.; Qin, W.; Wu, C., ACS Appl Mater Interfaces 2015, 7 (26), 14477-84.
79. Wan, Y.; Zheng, L.; Sun, Y.; Zhang, D., J. Mater. Chem. B 2014, 2 (30), 4818-4825.
80. Pati, P. B.; Damas, G.; Tian, L.; Fernandes, D. L. A.; Zhang, L.; Pehlivan, I. B.; Edvinsson, T.; Araujo, C. M.; Tian, H., Energy & Environmental Science 2017, 10 (6), 1372-1376.
81. Hu, J.; Wang, X.; Chen, F.; Xiao, B.; Tang, A.; Zhou, E., Polymers (Basel) 2017, 9 (10).
82. Kuo, C. T.; Wu, I. C.; Chen, L.; Yu, J.; Wu, L.; Chiu, D. T., Anal Chem 2018, 90 (20), 11785-11790.
83. Tseng, P.-J.; Chang, C.-L.; Chan, Y.-H.; Ting, L.-Y.; Chen, P.-Y.; Liao, C.-H.; Tsai, M.-L.; Chou, H.-H., ACS Catalysis 2018, 8 (9), 7766-7772.
84. Sachs, M.; Sprick, R. S.; Pearce, D.; Hillman, S. A. J.; Monti, A.; Guilbert, A. A. Y.; Brownbill, N. J.; Dimitrov, S.; Shi, X.; Blanc, F.; Zwijnenburg, M. A.; Nelson, J.; Durrant, J. R.; Cooper, A. I., Nat Commun 2018, 9 (1), 4968.
85. Zhao, P.; Wang, L.; Wu, Y.; Yang, T.; Ding, Y.; Yang, H. G.; Hu, A., Macromolecules 2019.

(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 設計與合成環鉑高分子奈米顆粒應用於可見光催化產氫:探討分子幾何構型之影響
2. 具磁性可回收之可見光應答光觸媒於光催化分解水產氫之研究
3. 二硫化錫於可見光驅動光催化分解水產氫之研究
4. 磷酸銀-二氧化鈦異質結構光觸媒之製備及其應用於光催化產氫
5. 探討不同π連接分子及予體取代基位置之予體-π-受體共軛聚合物於光催化產氫的影響
6. 設計與合成半導體高分子於光催化產氫之應用
7. 設計與合成具磺醯基之共軛高分子光催化劑及其在光催化產氫系統之應用
8. 設計與合成高熱穩定性三蝶烯衍生物之電子傳輸材料應用於有機發光二極體
9. 設計與合成氨基酸嵌段高分子予體與非富勒烯高分子受體於太陽能電池之研究
10. 一、具可拉伸、透明、抗水解及自修復特性之彈性體應用於仿皮膚之觸覺感測器 二、聚氨酯基彈性體的同步輻射研究
11. 設計與合成含二苯并磷氧化物之聚合物以應用於高效可見光催化產氫
12. 嵌入式微結構電容感測器應用於流體檢測
13. 線性之光照誘導之蒽交聯聚氨酯—具有可拉伸、防水、抗菌和可修復特性之多應用性材料
14. 可伸縮性,自黏性和自愈性之彈性聚合物,具可調節金屬配位和多重氫鍵之可穿戴電子傳感器
15. 用於可撓性壓力感測器之前瞻材料開發:1. 具雙模式修復之高分子並用於仿生觸覺感測器 2. 合成耐高溫碳化矽纖維並用於溫度與壓力感測器
 
* *