帳號:guest(18.191.239.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭博元
作者(外文):Cheng, Po-Yuan.
論文名稱(中文):氮摻雜階層式多孔碳奈米結構和有機金屬框架材料在高性能柔性膠態超級電容器之應用
論文名稱(外文):N-doped Hierarchical Porous Carbon Nanostructure and Metal Organic Frameworks Material for High Performance Flexible Gel-Type Supercapacitors
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):蔡德豪
衛子健
口試委員(外文):Tsai, De-Hao
Wei, Tzu-Chien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032541
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:76
中文關鍵詞:介孔二氧化矽球階層式碳奈米結構超級電容器柔性基板膠態電解質碳布
外文關鍵詞:mesoporous silica spherehierarchical carbon nanostructuresupercapacitorflexible substrategel-type electrolytecarbon cloth
相關次數:
  • 推薦推薦:0
  • 點閱點閱:405
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著便攜式和柔性電子設備的日益普及和重要性,近年來對靈活且高效的能量存儲設備的需求不斷增長。超級電容器因其高功率密度和長循環壽命而引起了很多研究的關注。開發高性能柔性固態超級電容器已經付出了相當大的努力。
本研究以二氧化矽奈米球為硬模板,具有良好導電性和柔韌性之碳布為集電板。並利用多巴胺易於附著在無機物表面或有機物的特性,在碳布和二氧化矽奈米球的表面上聚合,再經過高溫碳化和氫氧化鈉水溶液蝕刻,形成具有階層式孔洞和氮摻雜之碳奈米結構。此碳結構未經過任何化學性活化就具有1049.4 m2 g-1的高比表面積及2.37 cm2 g-1的高孔隙率。
以氮摻雜階層式孔洞之碳奈米結構 /碳布複合材料作為柔性膠態對稱超級電容器的電極材料,展現優異的電化學性質。此對稱式超級電容器在功率密度為0.5kW kg-1時表現出24.3Wh kg-1的高能量密度,並且在10kW kg-1的高功率密度下保持10.3Wh kg-1的能量密度。此對稱式超級電容器的循環穩定性非常好,在10 A / g的8000次循環操作後保有78%的高比電容保持率。
N-doped hierarchical porous carbon nanostructure (NHPCN) was created on carbon cloth (CC), through a self-assembled mesoporous silica spheres templating process, to fabricate high performance flexible gel-type symmetric supercapacitors (NHPCN@CC//NHPCN@CC). The NHPCN@CC//NHPCN@CC cell exhibited outstanding capacitive performances, delivering a high energy density of 24.3 Wh kg-1 at the power density of 0.5 kW kg-1 and maintaining a decent energy density of 10.3 Wh kg-1 at a high power density of 10 kW kg-1, among the highest for carbon based gel-type, symmetric supercapacitors. The success may be attributed to the continuous hollow, thin features of the NHPCN, with the hollow structure enabling local, fast adsorption/desorption of electrolyte ions for generation of electric double layer capacitances, and the thin carbon shells offering large amounts of exposed surface areas to accommodate electric double layer capacitances and pseudo-capacitances. The cycling stability of the NHPCN@CC//NHPCN@CC cell was excellent, exhibiting a high specific capacitance retention rate of 78% after 8000 cycle operations at 10 A g-1. The mechanical robustness of the NHPCN@CC//NHPCN@CC cell was also excellent, maintaining high energy and power densities even at a large bending angle of 135o.
Abstract----------------------------------------I
摘要--------------------------------------------II
誌謝--------------------------------------------III
總目錄------------------------------------------IV
圖目錄------------------------------------------VI
表目錄------------------------------------------X
第1章 緒論--------------------------------------1
1-1 前言----------------------------------------1
1-2 電化學原理-----------------------------------2
1-2-1 電化學反應系統-----------------------------2
1-2-2 影響電化學反應系統的因素--------------------4
1-2-3 電極材料---------------------------------4
1-2-4 電解質-------------------------------------5
1-3 超級電容器(supercapacitor)-------------------7
1-3-1 電雙層超級電容器----------------------------8
1-3-2 法拉第超級電容器---------------------------10
第2章 文獻回顧-----------------------------------11
2-1 柔性膠態超級電容器----------------------------11
2-1-1 碳材在柔性膠態超級電容器之應用---------------11
2-1-2 金屬氧化物在柔性膠態超級電容器之應用----------15
2-2 氮摻雜碳材-----------------------------------22
2-3 金屬有機框架材料------------------------------26
第3章 實驗方法與儀器------------------------------28
3-1 實驗動機-------------------------------------28
3-1-1 氮摻雜階層式多孔碳奈米結構-------------------28
3-1-2 金屬有機框架材料----------------------------29
3-2 實驗藥品-------------------------------------30
3-3 實驗器材-------------------------------------32
3-4 分析儀器-------------------------------------33
3-5 實驗流程-------------------------------------36
3-5-1 電極之清洗及前處理--------------------------36
3-5-2 製備二氧化矽奈米球--------------------------37
3-5-3 二氧化矽奈米球自組裝在碳布上-----------------37
3-5-4 在碳布上聚合多巴胺--------------------------37
3-5-5 在碳布上製備氮氣摻雜碳納米結構(NCN @ CC)---38
3-5-6 配置膠態電解液-----------------------------39
3-5-7 製作軟性對稱超級電容器----------------------39
3-5-8 在泡沫鎳上製備金屬有機框架材料(NiCo-MOF-74@NF)-39
3-5-9 電化學分析實驗-----------------------------40
第4章 結果與討論---------------------------------42
4-1 二氧化矽奈米球-------------------------------42
4-1-1 二氧化矽奈米球形貌分析----------------------42
4-1-2 二氧化矽奈米球BET分析-----------------------43
4-1-3 二氧化矽奈米球自組裝情形--------------------44
4-2 氮摻雜碳奈米結構分析--------------------------45
4-2-1 氮摻雜碳奈米結構之形貌分析------------------45
4-2-2 氮摻雜碳奈米結構之BET分析-------------------47
4-2-3 氮摻雜碳奈米結構之XPS元素分析---------------48
4-2-4 氮摻雜碳奈米結構之拉曼光譜和XRD分析---------50
4-2-5 氮摻雜碳奈米結構之電化學分析----------------53
4-3 金屬有基框架材料-----------------------------63
第5章 結論--------------------------------------69
第6章 參考文獻-----------------------------------70

[1] C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor, Journal of the American Chemical Society 130 (2008) 2730.
[2] S. Pandey, U.N. Maiti, K. Palanisamy, P. Nikolaev, S. Arepalli, Ultrasonicated double wall carbon nanotubes for enhanced electric double layer capacitance, Applied Physics Letters 104 (2014) 356-378.
[3] A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nature Materials 4 (2005) 366-377.
[4] R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta 45 (2000) 2483-2498.
[5] C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage, Advanced Materials 22 (2010) E28.
[6] J.R. Miller, P. Simon, Materials science - Electrochemical capacitors for energy management, Science 321 (2008) 651-652.
[7] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials 7 (2008) 845-854.
[8] H. Ohno, K. Fukumoto, Progress in ionic liquids for electrochemical reaction matrices, Electrochemistry 76 (2008) 16-23.
[9] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, Journal of Power Sources 196 (2011) 1-12.
[10] Y.J. Kang, S.J. Chun, S.S. Lee, B.Y. Kim, J.H. Kim, H. Chung, S.Y. Lee, W. Kim, All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion Gels, ACS Nano 6 (2012) 6400-6406.
[11] Y.J. Kang, H. Chung, C.H. Han, W. Kim, All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes (vol 23, 065401, 2012), Nanotechnology 23 (2012).
[12] J. Lee, W. Kim, W. Kim, Stretchable carbon nanotube/ion-gel supercapacitors with high durability realized through Interfacial microroughness, gACS Applied Materials & Interfaces 6 (2014) 13578-13586.
[13] X.H. Cao, B. Zheng, W.H. Shi, J. Yang, Z.X. Fan, Z.M. Luo, X.H. Rui, B. Chen, Q.Y. Yan, H. Zhang, Reduced graphene oxide-wrapped MoO3 Composites Prepared by Using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors, Advanced Materials 27 (2015) 4695-4701.
[14] Y. Li, Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability, Abstracts of Papers of the American Chemical Society 248 (2014).
[15] X.F. Wang, B. Liu, R. Liu, Q.F. Wang, X.J. Hou, D. Chen, R.M. Wang, G.Z. Shen, Fiber-based flexible all solid-state asymmetric supercapacitors for integrated photodetecting system, Angewandte Chemie-International Edition 53 (2014) 1849-1853.
[16] J.F. Xie, X. Sun, N. Zhang, K. Xu, M. Zhou, Y. Xie, Layer-by-layer beta-Ni(OH)(2)/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance, Nano Energy 2 (2013) 65-74.
[17] C.Z. Wu, X.L. Lu, L.L. Peng, K. Xu, X. Peng, J.L. Huang, G.H. Yu, Y. Xie, Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors, Nature Communications 4 (2013).
[18] G.M. Wang, X.H. Lu, Y.C. Ling, T. Zhai, H.Y. Wang, Y.X. Tong, Y. Li, LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors, ACS Nano 6 (2012) 10296-10302.
[19] M.S. Wu, Electrochemical capacitance from manganese oxide nanowire structure synthesized by cyclic voltammetric electrodeposition, Applied Physics Letters 87 (2005).
[20] M. Hoefer, P.R. Bandaru, Determination and enhancement of the capacitance contributions in carbon nanotube based electrode systems, Applied Physics Letters 95 (2009).
[21] J.W. Yan, Y.Y. Sun, L. Jiang, Y. Tian, R. Xue, L.X. Hao, W. Liu, B.L. Yi, Electrochemical performance of lithium ion capacitors using aqueous electrolyte at high temperature, Journal of Renewable and Sustainable Energy 5 (2013).
[22] C.M. Chuang, C.W. Huang, H.S. Teng, J.M. Ting, Effects of carbonn notube grafting on thep erformance of electric doublelayer capacitors, Energy & Fuels 24 (2010) 6476-6482.
[23] Y.X. Xu, Z.Y. Lin, X.Q. Huang, Y. Liu, Y. Huang, X.F. Duan, Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films, ACS Nano 7 (2013) 4042-4049.
[24] Q. Zheng, Z. Cai, Z. Ma, S. Gong, Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors, ACS Appl Mater Interfaces 7 (2015) 3263-3271.
[25] C.-C. Wang, J. Liang, Y.-H. Liao, S.-Y. Lu, 3D porous graphene nanostructure from a simple, fast, scalable process for hgh performance flexible gel-type supercapacitors, ACS Sustainable Chemistry & Engineering 5 (2017) 4457-4467.
[26] G.S. Gund, D.P. Dubal, N.R. Chodankar, J.Y. Cho, P. Gomez-Romero, C. Park, C.D. Lokhande, Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel, Sci Rep 5 (2015) 12454.
[27] W. Liu, X. Li, M. Zhu, X. He, High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel, Journal of Power Sources 282 (2015) 179-186.
[28] K. Ghosh, C.Y. Yue, M.M. Sk, R.K. Jena, Development of 3D urchin-shaped coaxial manganese dioxide@polyaniline (MnO2@PANI) composite and self-assembled 3D pillared gaphene foam for asymmetric all-solid-state flexible supercapacitor application, ACS Appl Mater Interfaces 9 (2017) 15350-15363.
[29] B.Y. Guan, L. Yu, X.W. Lou, Formation of asymmetric bowl-Like mesoporous particles via emulsion-induced interface anisotropic assembly, J Am Chem Soc 138 (2016) 11306-11311.
[30] C. Liu, J. Wang, J. Li, M. Zeng, R. Luo, J. Shen, X. Sun, W. Han, L. Wang, Synthesis of N-doped hollow-structured mesoporous carbon nanospheres for High-performance supercapacitors, ACS Appl Mater Interfaces 8 (2016) 7194-7204.
[31] T. Liu, C. Jiang, W. You, J. Yu, Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance, Journal of Materials Chemistry A 5 (2017) 8635-8643.
[32] J. Kim, J. Lee, J. You, M.S. Park, M.S. Al Hossain, Y. Yamauchi, J.H. Kim, Conductive polymers for next-generation energy storage systems: recent progress and new functions, Materials Horizons 3 (2016) 517-535.
[33] S. Park, M. Vosguerichian, Z.A. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics, Nanoscale 5 (2013) 1727-1752.
[34] Z. Weng, Y. Su, D.W. Wang, F. Li, J.H. Du, H.M. Cheng, Graphene-cellulose paper flexible supercapacitors, Advanced Energy Materials 1 (2011) 917-922.
[35] S. Shi, C.J. Xu, C. Yang, J. Li, H.D. Du, B.H. Li, F.Y. Kang, Flexible supercapacitors, Particuology 11 (2013) 371-377.
[36] M. Koo, K.I. Park, S.H. Lee, M. Suh, D.Y. Jeon, J.W. Choi, K. Kang, K.J. Lee, Bendable inorganic thin-film battery for fully fexible electronic systems, Nano Letters 12 (2012) 4810-4816.
[37] N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, asymmetric supercapacitor electrodes and devices, Advanced Materials 29 (2017).
[38] L.F. Chen, X.D. Zhang, H.W. Liang, M.G. Kong, Q.F. Guan, P. Chen, Z.Y. Wu, S.H. Yu, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors, ACS Nano 6 (2012) 7092-7102.
[39] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews 38 (2009) 2520-2531.
[40] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, Journal of Power Sources 195 (2010) 7880-7903.
[41] M. Sevilla, P. Valle-Vigon, A.B. Fuertes, N-doped polypyrrole-based porous carbons for CO2 capture, Advanced Functional Materials 21 (2011) 2781-2787.
[42] W. Stober, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in micron size range, Journal of Colloid and Interface Science 26 (1968) 62-&.
[43] K. Zhang, L.L. Xu, J.G. Jiang, N. Calin, K.F. Lam, S.J. Zhang, H.H. Wu, G.D. Wu, B. Albela, L. Bonneviot, P. Wu, Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure, J Am Chem Soc 135 (2013) 2427-2430.
[44] Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M. Characterisation of porous solids and powders, Powder Metallurgy 49 (2006) 102-102.
[45] Z.P. Li, X.L. Jiao, C. Li, D.R. Chen, Synthesis and application of nanocages in supercapacitors, Chemical Engineering Journal 351 (2018) 135-156.
[46] Y. Liang, H. Liu, Z. Li, R. Fu, D. Wu, In situ polydopamine coating-directed synthesis of nitrogen-doped ordered nanoporous carbons with superior performance in supercapacitors, Journal of Materials Chemistry A 1 (2013).
[47] D.S. Jeong, J.M. Yun, K.H. Kim, Highly porous nitrogen-doped carbon for superior electric double-layer capacitors, RSC Advances 7 (2017) 44735-44742.
[48] M. Yang, Z. Zhou, Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials, Advanced Science 4 (2017).
[49] Y.Q. Wang, G.Z. Wang, H.Q. Wang, C.H. Liang, W.P. Cai, L.D. Zhang, Chemical-template synthesis of micro/nanoscale magnesium Silicate Hollow Spheres for Waste-Water Treatment, Chemistry-a European Journal 16 (2010) 3497-3503.
[50] W.S.V. Lee, X.L. Huang, T.L. Tan, J.M. Xue, Low Li+ insertion barrier carbon for high energy efficient lithium-ion capacitor, ACS Applied Materials & Interfaces 10 (2018) 1690-1700.
[51] A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Communications 143 (2007) 47-57.
[52] K.L. Ai, Y.L. Liu, C.P. Ruan, L.H. Lu, G.Q. Lu, Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen-reduction catalysts, Advanced Materials 25 (2013) 998-1003.
[53] Y.H. Dai, H. Jiang, Y.J. Hu, Y. Fu, C.Z. Li, Controlled synthesis of ultrathin hollow mesoporous carbon nanospheres for supercapacitor applications, Industrial & Engineering Chemistry Research 53 (2014) 3125-3130.
[54] G.A. Ferrero, A.B. Fuertes, M. Sevilla, N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors, Journal of Materials Chemistry A 3 (2015) 2914-2923.
[55] C.Q. Yuan, X.H. Liu, M.Y. Jia, Z.X. Luo, J.N. Yao, Facile preparation of N- and O-doped hollow carbon spheres derived from poly(o-phenylenediamine) for supercapacitors, Journal of Materials Chemistry A 3 (2015) 3409-3415.
[56] B.G. Choi, S.J. Chang, H.W. Kang, C.P. Park, H.J. Kim, W.H. Hong, S. Lee, Y.S. Huh, High performance of a solid-state flexible asymmetric supercapacitor based on graphene films, Nanoscale 4 (2012) 4983-4988.
[57] J. Duay, E. Gillette, R. Liu, S.B. Lee, Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays, Physical Chemistry Chemical Physics 14 (2012) 3329-3337.
[58] S.Y. Wang, B. Pei, X.S. Zhao, R.A.W. Dryfe, Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors, Nano Energy 2 (2013) 530-536.
[59] C.Z. Meng, C.H. Liu, L.Z. Chen, C.H. Hu, S.S. Fan, Highly flexible and all-solid-state paper like polymer supercapacitors, Nano Letters 10 (2010) 4025-4031.
[60] N. Klein, I. Senkovska, K. Gedrich, U. Stoeck, A. Henschel, U. Mueller, S. Kaskel, A mesoporous metal-oganic framework, angewandte Chemie-International Edition 48 (2009) 9954-9957.
[61] Y.H. Ma, C.C. Tang, L. Zhang, Property and research process of metal-organic frameworks, in: J.S. Liang, L.J. Wang (Eds.), Advance in Ecological Environment Functional Materials and Ion Industry Iii2012, pp. 119.
[62] O.M. Yaghi, H.L. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, Journal of the American Chemical Society 117 (1995) 10401-10402.
[63] Y. Wang, G.Q. Ye, H.H. Chen, X.Y. Hu, Z. Niu, S.Q. Ma, Functionalized metal-organic framework as a new platform for efficient and selective removal of cadmium(II) from aqueous solution, Journal of Materials Chemistry A 3 (2015) 15292-15298.
[64] Y. Wang, H.L. Ge, G.Q. Ye, H.H. Chen, X.Y. Hu, Carbon functionalized metal organic framework/Nafion composites as novel electrode materials for ultrasensitive determination of dopamine, Journal of Materials Chemistry B 3 (2015) 3747-3753.
[65] D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dinca, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, Nature Materials 16 (2017) 220-224.
[66] Y. Wang, J. Xie, Y.C. Wu, H.L. Ge, X.Y. Hu, Preparation of a functionalized magnetic metal-organic framework sorbent for the extraction of lead prior to electrothermal atomic absorption spectrometer analysis, Journal of Materials Chemistry A 1 (2013) 8782-8789.
[67] Q.L. Zhu, Q. Xu, Metal-organic framework composites, Chemical Society Reviews 43 (2014) 5468-5512.
[68] B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis, Journal of the American Chemical Society 130 (2008) 5390.
[69] J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chemical Society Reviews 38 (2009) 1477-1504.
[70] Y. Yan, P. Gu, S.S. Zheng, M.B. Zheng, H. Pang, H.G. Xue, Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors, Journal of Materials Chemistry A 4 (2016) 19078-19085.
[71] L. Fan, L. Tang, H.F. Gong, Z.H. Yao, R. Guo, Carbon-nanoparticles encapsulated in hollow nickel oxides for supercapacitor application, Journal of Materials Chemistry 22 (2012) 16376-16381.
[72] H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks, Chemical Reviews 112 (2012) 673-674.
[73] C.J. Ye, Q.Q. Qin, J.Q. Liu, W.P. Mao, J. Yan, Y. Wang, J.W. Cui, Q. Zhang, L.P. Yang, Y.C. Wu, Coordination derived stable Ni-Co MOFs for foldable all-solid-state supercapacitors with high specific energy, Journal of Materials Chemistry A 7 (2019) 4998-5008.
[74] S.R. Chen, M. Xue, Y.Q. Li, Y. Pan, L.K. Zhu, S.L. Qiu, Rational design and synthesis of NixCo3-xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors, Journal of Materials Chemistry A 3 (2015) 20145-20152.
[75] J.P. Zheng, The limitations of energy density of battery/double-layer capacitor asymmetric cells, Journal of the Electrochemical Society 150 (2003) A484-A492.
[76] L. Wang, C. Lin, F.X. Zhang, J. Jin, Phase transformation guided single-layer beta-Co(OH)(2) nanosheets for pseudocapacitive electrodes, ACS Nano 8 (2014) 3724-3734.
[77] X.H. Xia, J.P. Tu, Y.Q. Zhang, Y.J. Mai, X.L. Wang, C.D. Gu, X.B. Zhao, three-dimentional porous nano-Ni/Co(OH)(2) nanoflake composite dilm: a pseudocapacitive Material with Superior Performance, Journal of Physical Chemistry C 115 (2011) 22662-22668.
[78] Z.B. Wu, Y.R. Zhu, X.B. Ji, NiCo2O4-based materials for electrochemical supercapacitors, Journal of Materials Chemistry A 2 (2014) 14759-14772.
[79] J. Yan, W. Sun, T. Wei, Q. Zhang, Z.J. Fan, F. Wei, Fabrication and electrochemical performances of hierarchical porous Ni(OH)(2) nanoflakes anchored on graphene sheets, Journal of Materials Chemistry 22 (2012) 11494-11502.
[80] W. Xia, A. Mahmood, R.Q. Zou, Q. Xu, Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy & Environmental Science 8 (2015) 1837-1866.
[81] G.L. Zhu, H. Wen, M. Ma, W.Y. Wang, L. Yang, L.C. Wang, X.F. Shi, X.W. Cheng, X.P. Sun, Y.D. Yao, A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance, Chemical Communications 54 (2018) 10499-10502.
[82] N. Campagnol, T.R.C. Van Assche, M.Y. Li, L. Stappers, M. Dinca, J.F.M. Denayer, K. Binnemans, D.E. De Vos, J. Fransaer, On the electrochemical deposition of metal-organic frameworks, Journal of Materials Chemistry A 4 (2016) 3914-3925.
[83] Y. Jiao, J. Pei, D.H. Chen, C.S. Yan, Y.Y. Hu, Q. Zhang, G. Chen, Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors, Journal of Materials Chemistry A 5 (2017) 1094-1102.
[84] J. Yang, Z.H. Ma, W.X. Gao, M.D. Wei, Layered structural Co-based MOF with conductive network frames as a New Supercapacitor Electrode, Chemistry-a European Journal 23 (2017) 631-636.
[85] J. Yang, C. Zheng, P.X. Xiong, Y.F. Li, M.D. Wei, Zn-doped Ni-MOF material with a high supercapacitive performance, Journal of Materials Chemistry A 2 (2014) 19005-19010.
[86] J. Kim, Y.R. Lee, W.S. Ahn, Dry-gel conversion synthesis of Cr-MIL-101 aided by grinding: high surface area and high yield synthesis with minimum purification, Chemical Communications 49 (2013) 7647-7649.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *