|
1. DeJesus-Hernandez, M.; Mackenzie, I. R.; Boeve, B. F.; Boxer, A. L.; Baker, M.; Rutherford, N. J.; Nicholson, A. M.; Finch, N. A.; Flynn, H.; Adamson, J., Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011, 72, 245-256. 2. Renton, A. E.; Majounie, E.; Waite, A.; Simón-Sánchez, J.; Rollinson, S.; Gibbs, J. R.; Schymick, J. C.; Laaksovirta, H.; Van Swieten, J. C.; Myllykangas, L., A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011, 72, 257-268. 3. Rohrer, J. D.; Isaacs, A. M.; Mizielinska, S.; Mead, S.; Lashley, T.; Wray, S.; Sidle, K.; Fratta, P.; Orrell, R. W.; Hardy, J., C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. The Lancet Neurology 2015, 14, 291-301. 4. Belzil, V. V.; Bauer, P. O.; Prudencio, M.; Gendron, T. F.; Stetler, C. T.; Yan, I. K.; Pregent, L.; Daughrity, L.; Baker, M. C.; Rademakers, R., Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta neuropathologica 2013, 126, 895-905. 5. Fratta, P.; Poulter, M.; Lashley, T.; Rohrer, J. D.; Polke, J. M.; Beck, J.; Ryan, N.; Hensman, D.; Mizielinska, S.; Waite, A. J., Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia. Acta neuropathologica 2013, 126, 401-409. 6. Waite, A. J.; Bäumer, D.; East, S.; Neal, J.; Morris, H. R.; Ansorge, O.; Blake, D. J., Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiology of aging 2014, 35, 1779. e5-1779. e13. 7. Donnelly, C. J.; Zhang, P.-W.; Pham, J. T.; Haeusler, A. R.; Mistry, N. A.; Vidensky, S.; Daley, E. L.; Poth, E. M.; Hoover, B.; Fines, D. M., RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 2013, 80, 415-428. 8. Lee, Y.-B.; Chen, H.-J.; Peres, J. N.; Gomez-Deza, J.; Attig, J.; Štalekar, M.; Troakes, C.; Nishimura, A. L.; Scotter, E. L.; Vance, C., Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell reports 2013, 5, 1178-1186. 9. Zu, T.; Gibbens, B.; Doty, N. S.; Gomes-Pereira, M.; Huguet, A.; Stone, M. D.; Margolis, J.; Peterson, M.; Markowski, T. W.; Ingram, M. A., Non-ATG–initiated translation directed by microsatellite expansions. Proceedings of the National Academy of Sciences 2011, 108, 260-265. 10. Zu, T.; Liu, Y.; Bañez-Coronel, M.; Reid, T.; Pletnikova, O.; Lewis, J.; Miller, T. M.; Harms, M. B.; Falchook, A. E.; Subramony, S., RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proceedings of the National Academy of Sciences 2013, 110, E4968-E4977. 11. Mann, D. M.; Rollinson, S.; Robinson, A.; Callister, J. B.; Thompson, J. C.; Snowden, J. S.; Gendron, T.; Petrucelli, L.; Masuda-Suzukake, M.; Hasegawa, M., Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta neuropathologica communications 2013, 1, 68. 12. Mori, K.; Weng, S.-M.; Arzberger, T.; May, S.; Rentzsch, K.; Kremmer, E.; Schmid, B.; Kretzschmar, H. A.; Cruts, M.; Van Broeckhoven, C., The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 2013, 339, 1335-1338. 13. May, S.; Hornburg, D.; Schludi, M. H.; Arzberger, T.; Rentzsch, K.; Schwenk, B. M.; Grässer, F. A.; Mori, K.; Kremmer, E.; Banzhaf-Strathmann, J., C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta neuropathologica 2014, 128, 485-503. 14. Yamakawa, M.; Ito, D.; Honda, T.; Kubo, K.-i.; Noda, M.; Nakajima, K.; Suzuki, N., Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Human molecular genetics 2014, 24, 1630-1645. 15. Schludi, M. H.; May, S.; Grässer, F. A.; Rentzsch, K.; Kremmer, E.; Küpper, C.; Klopstock, T.; Alliance, B. B. B.; Arzberger, T.; Edbauer, D., Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta neuropathologica 2015, 130, 537-555. 16. Darling, A. L.; Breydo, L.; Rivas, E. G.; Gebru, N. T.; Zheng, D.; Baker, J. D.; Blair, L. J.; Dickey, C. A.; Koren III, J.; Uversky, V. N., Repeated repeat problems: Combinatorial effect of C9orf72-derived dipeptide repeat proteins. International journal of biological macromolecules 2019, 127, 136-145. 17. Chang, Y.-J.; Jeng, U.-S.; Chiang, Y.-L.; Hwang, S.; Chen, Y.-R., The glycine-alanine dipeptide repeat from C9orf72 hexanucleotide expansions forms toxic amyloids possessing cell-to-cell transmission properties. Journal of Biological Chemistry 2016, 291, 4903-4911. 18. Flores, B. N.; Dulchavsky, M. E.; Krans, A.; Sawaya, M. R.; Paulson, H. L.; Todd, P. K.; Barmada, S. J.; Ivanova, M. I., Distinct C9orf72-associated dipeptide repeat structures correlate with neuronal toxicity. PloS one 2016, 11, e0165084. 19. Freibaum, B. D.; Taylor, J. P., The role of dipeptide repeats in C9ORF72-related ALS-FTD. Frontiers in molecular neuroscience 2017, 10, 35. 20. Mizielinska, S.; Grönke, S.; Niccoli, T.; Ridler, C. E.; Clayton, E. L.; Devoy, A.; Moens, T.; Norona, F. E.; Woollacott, I. O.; Pietrzyk, J., C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 2014, 345, 1192-1194. 21. Wen, X.; Tan, W.; Westergard, T.; Krishnamurthy, K.; Markandaiah, S. S.; Shi, Y.; Lin, S.; Shneider, N. A.; Monaghan, J.; Pandey, U. B., Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 2014, 84, 1213-1225. 22. Freibaum, B. D.; Lu, Y.; Lopez-Gonzalez, R.; Kim, N. C.; Almeida, S.; Lee, K.-H.; Badders, N.; Valentine, M.; Miller, B. L.; Wong, P. C., GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 2015, 525, 129. 23. Lee, K.-H.; Zhang, P.; Kim, H. J.; Mitrea, D. M.; Sarkar, M.; Freibaum, B. D.; Cika, J.; Coughlin, M.; Messing, J.; Molliex, A., C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 2016, 167, 774-788. e17. 24. Lin, Y.; Mori, E.; Kato, M.; Xiang, S.; Wu, L.; Kwon, I.; McKnight, S. L., Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers. Cell 2016, 167, 789-802. e12. 25. Huntley, M. A.; Golding, G. B., Simple sequences are rare in the Protein Data Bank. Proteins: Structure, Function, and Bioinformatics 2002, 48, 134-140. 26. Uversky, V. N., Natively unfolded proteins: a point where biology waits for physics. Protein science 2002, 11, 739-756. 27. Brangwynne, C. P.; Tompa, P.; Pappu, R. V., Polymer physics of intracellular phase transitions. Nature Physics 2015, 11, 899. 28. Schmidt, H. B.; Goerlich, D., Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends in biochemical sciences 2016, 41, 46-61. 29. Jovičić, A.; Mertens, J.; Boeynaems, S.; Bogaert, E.; Chai, N.; Yamada, S. B.; Paul III, J. W.; Sun, S.; Herdy, J. R.; Bieri, G., Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nature neuroscience 2015, 18, 1226. 30. Boeynaems, S.; Bogaert, E.; Michiels, E.; Gijselinck, I.; Sieben, A.; Jovičić, A.; De Baets, G.; Scheveneels, W.; Steyaert, J.; Cuijt, I., Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Scientific reports 2016, 6, 20877. 31. Yang, D.; Abdallah, A.; Li, Z.; Lu, Y.; Almeida, S.; Gao, F.-B., FTD/ALS-associated poly (GR) protein impairs the Notch pathway and is recruited by poly (GA) into cytoplasmic inclusions. Acta neuropathologica 2015, 130, 525-535. 32. Yeh, Y.-Q.; Liao, K.-F.; Shih, O.; Shiu, Y.-J.; Wu, W.-R.; Su, C.-J.; Lin, P.-C.; Jeng, U.-S., Probing the acid-induced packing structure changes of the molten globule domains of a protein near equilibrium unfolding. The journal of physical chemistry letters 2017, 8, 470-477. 33. Skou, S.; Gillilan, R. E.; Ando, N., Synchrotron-based small-angle X-ray scattering of proteins in solution. Nature protocols 2014, 9, 1727. 34. Roe, R.-J.; Roe, R., Methods of X-ray and neutron scattering in polymer science. Oxford university press New York: 2000; Vol. 739. 35. Putnam, C. D.; Hammel, M.; Hura, G. L.; Tainer, J. A., X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Quarterly reviews of biophysics 2007, 40, 191-285. 36. Receveur-Bréchot, V.; Durand, D., How random are intrinsically disordered proteins? A small angle scattering perspective. Current Protein and Peptide Science 2012, 13, 55-75. 37. Franke, D.; Petoukhov, M.; Konarev, P.; Panjkovich, A.; Tuukkanen, A.; Mertens, H.; Kikhney, A.; Hajizadeh, N.; Franklin, J.; Jeffries, C., ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. Journal of applied crystallography 2017, 50, 1212-1225. 38. Konarev, P. V.; Volkov, V. V.; Sokolova, A. V.; Koch, M. H.; Svergun, D. I., PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Journal of applied crystallography 2003, 36, 1277-1282. 39. Svergun, D., Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Journal of applied crystallography 1992, 25, 495-503. 40. Svergun, D.; Barberato, C.; Koch, M. H., CRYSOL–a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. Journal of applied crystallography 1995, 28, 768-773. 41. Franke, D.; Svergun, D. I., DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. Journal of applied crystallography 2009, 42, 342-346. 42. Svergun, D. I., Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophysical journal 1999, 76, 2879-2886. 43. Svergun, D. I.; Petoukhov, M. V.; Koch, M. H., Determination of domain structure of proteins from X-ray solution scattering. Biophysical journal 2001, 80, 2946-2953. 44. Volkov, V. V.; Svergun, D. I., Uniqueness of ab initio shape determination in small-angle scattering. Journal of applied crystallography 2003, 36, 860-864. 45. Kozin, M. B.; Svergun, D. I., Automated matching of high-and low-resolution structural models. Journal of applied crystallography 2001, 34, 33-41. 46. Zhang, Y., I-TASSER server for protein 3D structure prediction. BMC bioinformatics 2008, 9, 40. 47. Roy, A.; Kucukural, A.; Zhang, Y., I-TASSER: a unified platform for automated protein structure and function prediction. Nature protocols 2010, 5, 725. 48. Yang, J.; Zhang, Y., I-TASSER server: new development for protein structure and function predictions. Nucleic acids research 2015, 43, W174-W181. 49. Kaufmann, K. W.; Lemmon, G. H.; DeLuca, S. L.; Sheehan, J. H.; Meiler, J., Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 2010, 49, 2987-2998. 50. Sønderby, P.; Rinnan, Å.; Madsen, J. J.; Harris, P.; Bukrinski, J. T.; Peters, G. n. H., Small-angle X-ray scattering data in combination with RosettaDock improves the docking energy landscape. Journal of chemical information and modeling 2017, 57, 2463-2475. 51. Perkampus, H.-H., UV-VIS Spectroscopy and its Applications. Springer Science & Business Media: 2013. 52. Aitken, A.; Learmonth, M. P., Protein determination by UV absorption. In The protein protocols handbook, Springer: 2009; pp 3-6. 53. Cavaluzzi, M. J.; Borer, P. N., Revised UV extinction coefficients for nucleoside‐5′‐monophosphates and unpaired DNA and RNA. Nucleic acids research 2004, 32, e13-e13. 54. Zhao, H.; Brown, P. H.; Schuck, P., On the distribution of protein refractive index increments. Biophysical journal 2011, 100, 2309-2317. 55. Nobbmann, U., Refractive Index Increment dndc for proteins, polymers SLS. 2013. 56. Williams, K. WHAT IS A DN/DC VALUE AND WHY IS IT IMPORTANT FOR GPC/SEC?|Materials Talks. https://www.materials-talks.com/blog/2018/08/22/what-is-a-dndc-value-and-why-is-it-important-for-gpcsec/. 57. Yamashita, H.; Kato, T.; Oba, M.; Misawa, T.; Hattori, T.; Ohoka, N.; Tanaka, M.; Naito, M.; Kurihara, M.; Demizu, Y., Development of a cell-penetrating peptide that exhibits responsive changes in its secondary structure in the cellular environment. Scientific reports 2016, 6, 33003.
|