|
1. Anastas, P., & Eghbali, N. (2010). Green chemistry: principles and practice. Chemical Society Reviews, 39(1), 301-312. 2. de Marco, B. A., Rechelo, B. S., Tótoli, E. G., Kogawa, A. C., & Salgado, H. R. N. (2019). Evolution of green chemistry and its multidimensional impacts: A review. Saudi pharmaceutical journal, 27(1), 1-8. 3. Siores, E., & Do Rego, D. (1995). Microwave applications in materials joining. Journal of Materials Processing Technology, 48(1-4), 619-625. 4. Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., & Rousell, J. (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron letters, 27(3), 279-282. 5. Giguere, R. J., Bray, T. L., Duncan, S. M., & Majetich, G. (1986). Application of commercial microwave ovens to organic synthesis. Tetrahedron letters, 27(41), 4945-4948. 6. Otera, J. (1993). Transesterification. Chemical reviews, 93(4), 1449-1470. 7. Freedman, B., Butterfield, R. O., & Pryde, E. H. (1986). Transesterification kinetics of soybean oil 1. Journal of the American Oil Chemists’ Society, 63(10), 1375-1380. 8. Meher, L. C., Sagar, D. V., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable and sustainable energy reviews, 10(3), 248-268. 9. 楊维清. (2002). "微波促進的有機合成反應研究."碩士學位論文.四川大學. 10. Lidström, P., Tierney, J., Watheyb, B., & Westmana, J. (2001). Microwave assisted organic synthesisÐa review. Tetrahedron, 57, 9225-9283. 11. Maier, J. (1995). Ionic conduction in space charge regions. Progress in solid state chemistry, 23(3), 171-263. 12. de la Hoz, A., Diaz-Ortiz, A., & Moreno, A. (2005). Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews, 34(2), 164-178. 13. Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., & Miles, N. J. (2002). Microwave heating applications in environmental engineering—a review. Resources, conservation and recycling, 34(2), 75-90. 14. Mishra, R. R., & Sharma, A. K. (2016). Microwave–material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78-97. 15. Zhang, X., Hayward, D. O., Lee, C., & Mingos, D. M. P. (2001). Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS2 catalysts. Applied Catalysis B: Environmental, 33(2), 137-148. 16. Hayward, D. (1999). Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating. Chemical Communications, (11), 975-976. 17. Zhang, X., Hayward, D. O., & Mingos, D. M. P. (2003). Effects of microwave dielectric heating on heterogeneous catalysis. Catalysis Letters, 88(1-2), 33-38. 18. Stefanidis, G. D., Munoz, A. N., Sturm, G. S., & Stankiewicz, A. (2014). A helicopter view of microwave application to chemical processes: reactions, separations, and equipment concepts. Reviews in Chemical Engineering, 30(3), 233-259. 19. Kappe, C. O. (2004). Controlled microwave heating in modern organic synthesis. Angewandte Chemie International Edition, 43(46), 6250-6284. 20. Li, H., Cui, J., Liu, J., Li, X., & Gao, X. (2017). Mechanism of the effects of microwave irradiation on the relative volatility of binary mixtures. AIChE Journal, 63(4), 1328-1337. 21. Gao, X., Li, X., Zhang, J., Sun, J., & Li, H. (2013). Influence of a microwave irradiation field on vapor–liquid equilibrium. Chemical Engineering Science, 90, 213-220. 22. Ding, H., Qi, J. L., Gao, Y. J., Chen, R. R., Liu, S. J., & Han, X. (2016). Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate. Chemical Papers, 70(10), 1380-1388. 23. Dall’Oglio, E. L., de Sousa Jr, P. T., Campos, D. C., Gomes de Vasconcelos, L., da Silva, A. C., Ribeiro, F., ... & Kuhnen, C. A. (2015). Measurement of dielectric properties and microwave-assisted homogeneous acid-catalyzed transesterification in a monomode reactor. The Journal of Physical Chemistry A, 119(34), 8971-8980. 24. Hu, K., Wang, H., Liu, Y., & Yang, C. (2015). KNO3/CaO as cost-effective heterogeneous catalyst for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Journal of Industrial and Engineering Chemistry, 28, 334-343. 25. Ochoa-Gómez, J. R., Gómez-Jiménez-Aberasturi, O., Maestro-Madurga, B., Pesquera-Rodríguez, A., Ramírez-López, C., Lorenzo-Ibarreta, L., ... & Villarán-Velasco, M. C. (2009). Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: catalyst screening and reaction optimization. Applied Catalysis A: General, 366(2), 315-324. 26. Simanjuntak, F. S. H., Kim, T. K., Lee, S. D., Ahn, B. S., Kim, H. S., & Lee, H. (2011). CaO-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate: Isolation and characterization of an active Ca species. Applied Catalysis A: General, 401(1-2), 220-225. 27. Lu, P., Wang, H., & Hu, K. (2013). Synthesis of glycerol carbonate from glycerol and dimethyl carbonate over the extruded CaO-based catalyst. Chemical engineering journal, 228, 147-154. 28. Tong, W., Mou-hua, W., Wei, W., Yu-han, S., & Bing, Z. (2002). Synthesis of Methyl Carbonate by Transesterification over Mesoporous Solid Base [J]. Petrochemical Technology, 12. 29. Zhang, Y., Ji, Z., Xu, R., & Fang, Y. (2012). Experimental and kinetic studies on a homogeneous system for diethyl carbonate synthesis by transesterification. Chemical Engineering & Technology, 35(4), 693-699.
30. Shukla, K., & Srivastava, V. C. (2018). Efficient Synthesis of Diethyl Carbonate from Propylene Carbonate and Ethanol Using Mg–La Catalysts: Characterization, Parametric, and Thermodynamic Analysis. Industrial & Engineering Chemistry Research, 57(38), 12726-12735. 31. Malyaadri, M., Jagadeeswaraiah, K., Prasad, P. S., & Lingaiah, N. (2011). Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Mg/Al/Zr catalysts. Applied catalysis a: general, 401(1-2), 153-157. 32. Bai, R., Wang, S., Mei, F., Li, T., & Li, G. (2011). Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by KF modified hydroxyapatite. Journal of Industrial and Engineering Chemistry, 17(4), 777-781. 33. Gudzinowicz, B. J., & Driscoll, J. L. (1961). Separation and Analysis of Organic Carbonates by Gas Chromatography. Analytical Chemistry, 33(11), 1508-1510. 34. Houze, P., Chaussard, J., Harry, P., & Pays, M. (1993). Simultaneous determination of ethylene glycol, propylene glycol, 1, 3-butylene glycol and 2, 3-butylene glycol in human serum and urine by wide-bore column gas chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 619(2), 251-257. 35. Liu, P., Derchi, M., & Hensen, E. J. (2014). Promotional effect of transition metal doping on the basicity and activity of calcined hydrotalcite catalysts for glycerol carbonate synthesis. Applied Catalysis B: Environmental, 144, 135-143. 36. Bhanage, B. M., Fujita, S. I., Ikushima, Y., & Arai, M. (2001). Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Applied Catalysis A: General, 219(1-2), 259-266. 37. Murugan, C., & Bajaj, H. C. (2011). Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF/Al2O3 as an efficient solid base catalyst. Fuel processing technology, 92(1), 77-82. 38. 黄中元, 和孫東成. (2008). 基於磺酸鹽的水性聚氨酯研究進展. 中國專利. 39. 姜麗, 許甜甜, 葉錦剛, & 湯嘉陵. (2012). 新型磺酸型水性聚氨酯的合成與研究. 塗料工業, 42(11), 4-7. 40. Kadkin, O., Osajda, K., Kaszynski, P., & Barber, T. A. (2003). Polyester polyols: synthesis and characterization of diethylene glycol terephthalate oligomers. Journal of Polymer Science Part A: Polymer Chemistry, 41(8), 1114-1123. 41. Lin, L. H., Chiang, C. Y., Liu, H. J., & Chen, K. M. (2002). Preparation and properties of water‐soluble polyester surfactants. I. Preparation and surface activity of poly (ethylene glycol) dimethyl 5‐sulfo‐isophthalate sodium salt polyester surfactants. Journal of applied polymer science, 86(11), 2727-2731. 42. Lee, H. T., Wu, S. Y., & Jeng, R. J. (2006). Effects of sulfonated polyol on the properties of the resultant aqueous polyurethane dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 276(1-3), 176-185.. 43. Patil, P. D., Gude, V. G., Reddy, H. K., Muppaneni, T., & Deng, S. (2012). Biodiesel production from waste cooking oil using sulfuric acid and microwave irradiation processes. Journal of Environmental Protection, 3(1), 107. 44. Yu, G. W., Nie, J., Lu, L. G., Wang, S. P., Li, Z. G., & Lee, M. R. (2017). Transesterification of soybean oil by using the synergistic microwave-ultrasonic irradiation. Ultrasonics sonochemistry, 39, 281-290. 45. Hsiao, M. C., Lin, C. C., & Chang, Y. H. (2011). Microwave irradiation-assisted transesterification of soybean oil to biodiesel catalyzed by nanopowder calcium oxide. Fuel, 90(5), 1963-1967. 46. Patil, P., Gude, V. G., Pinappu, S., & Deng, S. (2011). Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions. Chemical Engineering Journal, 168(3), 1296-1300. 47. Zhang, S., Zu, Y. G., Fu, Y. J., Luo, M., Zhang, D. Y., & Efferth, T. (2010). Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresource technology, 101(3), 931-936. 48. Wang, S., Xu, L., Okoye, P. U., Li, S., & Tian, C. (2018). Microwave-assisted transesterification of glycerol with dimethyl carbonate over sodium silicate catalyst in the sealed reaction system. Energy conversion and management, 164, 543-551. 49. Teng, W. K., Ngoh, G. C., Yusoff, R., & Aroua, M. K. (2016). Microwave-assisted transesterification of industrial grade crude glycerol for the production of glycerol carbonate. Chemical Engineering Journal, 284, 469-477. 50. Yadav, G. D., Hude, M. P., & Talpade, A. D. (2015). Microwave assisted process intensification of lipase catalyzed transesterification of 1, 2 propanediol with dimethyl carbonate for the green synthesis of propylene carbonate: Novelties of kinetics and mechanism of consecutive reactions. Chemical Engineering Journal, 281, 199-208. 51. Muley, P. D., & Boldor, D. (2013). Scale-up of a continuous microwave-assisted transesterification process of soybean oil for biodiesel production. Transactions of the ASABE, 56(5), 1847-1854. 52. El Sherbiny, S. A., Refaat, A. A., & El Sheltawy, S. T. (2010). Production of biodiesel using the microwave technique. Journal of Advanced Research, 1(4), 309-314.
|