帳號:guest(18.116.23.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王誌鴻
作者(外文):Wang, Chih-Hong
論文名稱(中文):微波對轉酯化反應的平衡常數之影響及微波應用於合成磺酸鈉多元醇
論文名稱(外文):Effect of Microwave on the Equilibrium Constant of Transesterification and Microwave-assisted Synthesis of Sulfonic Acid type Polyester Polyol
指導教授(中文):汪上曉
指導教授(外文):Wong, Shan-Hill
口試委員(中文):張光欽
吳承彥
口試委員(外文):Chang, Kuang-Chin
Wu, Cheng-Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032537
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:63
中文關鍵詞:微波輔助轉酯化反應平衡常數製程優化
外文關鍵詞:Microwave-assistedTransesterificationEquilibrium constantOptimization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
微波加熱可以有效的使用能源且可以縮短總反應時間,因此微波的相關研究也越來越多,本研究主要是觀察微波對於轉酯化反應的影響。第一部分是藉由丙三醇和碳酸二甲酯的轉酯化反應,探討微波在均相系統和非均相系統是否會影響反應的平衡常數並且使用氣相層析儀來分析結果,本研究選擇碳酸鉀為均相觸媒以及氧化鈣為非均相觸媒,並且選擇不同的反應物莫耳比以及不同的反應溫度的條件,發現不管在哪個條件下微波雖然都可以加速丙三醇和碳酸二甲酯的轉酯化反應,但是並不能改變平衡轉化率。而在乙醇和碳酸丙烯酯的轉酯化反應中,比較一般加熱條件與微波加熱的平衡常數與標準反應熱,發現微波加熱並不能改變平衡轉化率,但可以觀察到微波輔助轉酯化反應的加速效果。
第二部分是以微波加熱優化微波輔助磺酸鈉多元醇合成的轉酯化反應,找到最佳化的微波控制程序並且使用NMR來分析結果,當反應總重為75克且使用Power to time模式微波控制程序,可以使DMSIP的轉化率約為92%且磺酸鈉多元醇的顏色不會太深,在反應的過程中更可以觀察到微波的非熱效應,同樣在270 ℃的條件下供給系統不同大小的微波功率,造成反應速率大小的改變;當反應總重為150克時,以不同的Power to time微波控制程序輔助反應,在微波功率是原來的1.5倍時,有最好的轉化率92.5%且總反應時間只有8.5 min,由實驗結果可以發現若供給越大的微波功率,轉化率到達90%以上所需的能耗越少且所需的反應時間越少,但因為較高的微波功率使反應系統的溫度越高而讓磺酸鈉多元醇的顏色變成深褐色,也發現微波輔助轉酯化反應所需的能耗和反應總重沒有正比關係,因此高功率的微波加熱有很好的能源使用效率。
Microwave heating has numerous advantages such as consume less energy than conventional heating and could reduce the reaction time so researching for microwave-assisted organic synthesis is more and more popular. Especially, we focused on the effects of microwave on the transesterification.
At first, transesterification of glycerol and dimethyl carbonate using K2CO3 as homogeneous catalyst and CaO as heterogeneous catalyst was studied in this work. Effects of the parameters include the molar ratio of dimethyl carbonate to glycerol, the reaction temperature, and the heating methods. It observed that the equilibrium constants of transesterification have no shift by conventional heating and microwave heating. Then, transesterification of ethanol and propylene carbonate using C2H5ONa as homogeneous catalyst was also studied in this work. The molar ratio of ethanol and propylene carbonate was 8 and the reaction temperature was 303 K, 323 K, 343K. It observed that the equilibrium constants of transesterification have no shift by conventional heating and microwave heating but the microwave heating can accelerate the reaction rate. Furthermore, the difference between theoretic equilibrium constant and experimental equilibrium constants was due to the personal error.
Second, we improved the process of synthesis of sulfonic acid type polyester polyol by microwave heating. It was found that the microwave-assisted reaction modes, namely, Ramp to temperature, Standard control and Power to time, greatly influenced the reaction. When the reaction was conducted in Ramp to temperature, with a reaction temperature of 180 °C and reaction time of 2 hr, the DMSIP conversion reached 98%. However, it only took 12 min to reach similar DMSIP conversion in Power to time mode. The reaction in Power to time mode showed much more advantages in reducing the consumption of the energy and shortening the reaction time than that in Ramp to temperature mode. Meanwhile, there were specific microwave effects of microwave irradiation at 270 °C. Moreover, in terms of the reaction in Power to time mode, energy consumption could be reduced with the increase of the irradiation power.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1研究背景 1
1-1-1前言 1
1-1-2微波 2
1-1-3轉酯化反應 3
1-2研究動機 4
1-3章節安排 5
第二章 微波對轉酯化反應的平衡常數之影響 6
2-1文獻回顧 6
2-1-1 微波加熱對反應平衡的影響 6
2-1-2 碳酸甘油酯的製備方法 11
2-1-3碳酸二乙酯的製備方法 13
2-2研究方法 15
2-2-1實驗設備與儀器 15
2-2-2實驗藥品 15
2-2-3分析方法 16
2-2-4實驗步驟 23
2-3碳酸甘油酯合成的結果與討論 25
2-3-1均相觸媒輔助碳酸甘油酯反應之結果 25
2-3-2非均相觸媒碳酸甘油酯反應之結果 29
2-4碳酸二乙酯合成的結果與討論 33
第三章 微波應用於合成磺酸鈉多元醇 38
3-1文獻回顧 38
3-1-1磺酸鈉多元醇的合成方法 38
3-1-2 微波輔助轉酯化反應 40
3-2研究方法 43
3-2-1實驗設備與儀器 43
3-2-2實驗藥品 43
3-2-3分析方法 44
3-2-4實驗步驟 46
3-3結果與討論 47
3-3-1製程優化 47
3-3-2放大兩倍 55
第四章 總結 58
第五章 參考文獻 60
1. Anastas, P., & Eghbali, N. (2010). Green chemistry: principles and practice. Chemical Society Reviews, 39(1), 301-312.
2. de Marco, B. A., Rechelo, B. S., Tótoli, E. G., Kogawa, A. C., & Salgado, H. R. N. (2019). Evolution of green chemistry and its multidimensional impacts: A review. Saudi pharmaceutical journal, 27(1), 1-8.
3. Siores, E., & Do Rego, D. (1995). Microwave applications in materials joining. Journal of Materials Processing Technology, 48(1-4), 619-625.
4. Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., & Rousell, J. (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron letters, 27(3), 279-282.
5. Giguere, R. J., Bray, T. L., Duncan, S. M., & Majetich, G. (1986). Application of commercial microwave ovens to organic synthesis. Tetrahedron letters, 27(41), 4945-4948.
6. Otera, J. (1993). Transesterification. Chemical reviews, 93(4), 1449-1470.
7. Freedman, B., Butterfield, R. O., & Pryde, E. H. (1986). Transesterification kinetics of soybean oil 1. Journal of the American Oil Chemists’ Society, 63(10), 1375-1380.
8. Meher, L. C., Sagar, D. V., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable and sustainable energy reviews, 10(3), 248-268.
9. 楊维清. (2002). "微波促進的有機合成反應研究."碩士學位論文.四川大學.
10. Lidström, P., Tierney, J., Watheyb, B., & Westmana, J. (2001). Microwave assisted organic synthesisÐa review. Tetrahedron, 57, 9225-9283.
11. Maier, J. (1995). Ionic conduction in space charge regions. Progress in solid state chemistry, 23(3), 171-263.
12. de la Hoz, A., Diaz-Ortiz, A., & Moreno, A. (2005). Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews, 34(2), 164-178.
13. Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., & Miles, N. J. (2002). Microwave heating applications in environmental engineering—a review. Resources, conservation and recycling, 34(2), 75-90.
14. Mishra, R. R., & Sharma, A. K. (2016). Microwave–material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78-97.
15. Zhang, X., Hayward, D. O., Lee, C., & Mingos, D. M. P. (2001). Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS2 catalysts. Applied Catalysis B: Environmental, 33(2), 137-148.
16. Hayward, D. (1999). Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating. Chemical Communications, (11), 975-976.
17. Zhang, X., Hayward, D. O., & Mingos, D. M. P. (2003). Effects of microwave dielectric heating on heterogeneous catalysis. Catalysis Letters, 88(1-2), 33-38.
18. Stefanidis, G. D., Munoz, A. N., Sturm, G. S., & Stankiewicz, A. (2014). A helicopter view of microwave application to chemical processes: reactions, separations, and equipment concepts. Reviews in Chemical Engineering, 30(3), 233-259.
19. Kappe, C. O. (2004). Controlled microwave heating in modern organic synthesis. Angewandte Chemie International Edition, 43(46), 6250-6284.
20. Li, H., Cui, J., Liu, J., Li, X., & Gao, X. (2017). Mechanism of the effects of microwave irradiation on the relative volatility of binary mixtures. AIChE Journal, 63(4), 1328-1337.
21. Gao, X., Li, X., Zhang, J., Sun, J., & Li, H. (2013). Influence of a microwave irradiation field on vapor–liquid equilibrium. Chemical Engineering Science, 90, 213-220.
22. Ding, H., Qi, J. L., Gao, Y. J., Chen, R. R., Liu, S. J., & Han, X. (2016). Microwave-assisted continuous reactive distillation process for preparation of ethyl acetate. Chemical Papers, 70(10), 1380-1388.
23. Dall’Oglio, E. L., de Sousa Jr, P. T., Campos, D. C., Gomes de Vasconcelos, L., da Silva, A. C., Ribeiro, F., ... & Kuhnen, C. A. (2015). Measurement of dielectric properties and microwave-assisted homogeneous acid-catalyzed transesterification in a monomode reactor. The Journal of Physical Chemistry A, 119(34), 8971-8980.
24. Hu, K., Wang, H., Liu, Y., & Yang, C. (2015). KNO3/CaO as cost-effective heterogeneous catalyst for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Journal of Industrial and Engineering Chemistry, 28, 334-343.
25. Ochoa-Gómez, J. R., Gómez-Jiménez-Aberasturi, O., Maestro-Madurga, B., Pesquera-Rodríguez, A., Ramírez-López, C., Lorenzo-Ibarreta, L., ... & Villarán-Velasco, M. C. (2009). Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: catalyst screening and reaction optimization. Applied Catalysis A: General, 366(2), 315-324.
26. Simanjuntak, F. S. H., Kim, T. K., Lee, S. D., Ahn, B. S., Kim, H. S., & Lee, H. (2011). CaO-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate: Isolation and characterization of an active Ca species. Applied Catalysis A: General, 401(1-2), 220-225.
27. Lu, P., Wang, H., & Hu, K. (2013). Synthesis of glycerol carbonate from glycerol and dimethyl carbonate over the extruded CaO-based catalyst. Chemical engineering journal, 228, 147-154.
28. Tong, W., Mou-hua, W., Wei, W., Yu-han, S., & Bing, Z. (2002). Synthesis of Methyl Carbonate by Transesterification over Mesoporous Solid Base [J]. Petrochemical Technology, 12.
29. Zhang, Y., Ji, Z., Xu, R., & Fang, Y. (2012). Experimental and kinetic studies on a homogeneous system for diethyl carbonate synthesis by transesterification. Chemical Engineering & Technology, 35(4), 693-699.

30. Shukla, K., & Srivastava, V. C. (2018). Efficient Synthesis of Diethyl Carbonate from Propylene Carbonate and Ethanol Using Mg–La Catalysts: Characterization, Parametric, and Thermodynamic Analysis. Industrial & Engineering Chemistry Research, 57(38), 12726-12735.
31. Malyaadri, M., Jagadeeswaraiah, K., Prasad, P. S., & Lingaiah, N. (2011). Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Mg/Al/Zr catalysts. Applied catalysis a: general, 401(1-2), 153-157.
32. Bai, R., Wang, S., Mei, F., Li, T., & Li, G. (2011). Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by KF modified hydroxyapatite. Journal of Industrial and Engineering Chemistry, 17(4), 777-781.
33. Gudzinowicz, B. J., & Driscoll, J. L. (1961). Separation and Analysis of Organic Carbonates by Gas Chromatography. Analytical Chemistry, 33(11), 1508-1510.
34. Houze, P., Chaussard, J., Harry, P., & Pays, M. (1993). Simultaneous determination of ethylene glycol, propylene glycol, 1, 3-butylene glycol and 2, 3-butylene glycol in human serum and urine by wide-bore column gas chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 619(2), 251-257.
35. Liu, P., Derchi, M., & Hensen, E. J. (2014). Promotional effect of transition metal doping on the basicity and activity of calcined hydrotalcite catalysts for glycerol carbonate synthesis. Applied Catalysis B: Environmental, 144, 135-143.
36. Bhanage, B. M., Fujita, S. I., Ikushima, Y., & Arai, M. (2001). Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Applied Catalysis A: General, 219(1-2), 259-266.
37. Murugan, C., & Bajaj, H. C. (2011). Synthesis of diethyl carbonate from dimethyl carbonate and ethanol using KF/Al2O3 as an efficient solid base catalyst. Fuel processing technology, 92(1), 77-82.
38. 黄中元, 和孫東成. (2008). 基於磺酸鹽的水性聚氨酯研究進展. 中國專利.
39. 姜麗, 許甜甜, 葉錦剛, & 湯嘉陵. (2012). 新型磺酸型水性聚氨酯的合成與研究. 塗料工業, 42(11), 4-7.
40. Kadkin, O., Osajda, K., Kaszynski, P., & Barber, T. A. (2003). Polyester polyols: synthesis and characterization of diethylene glycol terephthalate oligomers. Journal of Polymer Science Part A: Polymer Chemistry, 41(8), 1114-1123.
41. Lin, L. H., Chiang, C. Y., Liu, H. J., & Chen, K. M. (2002). Preparation and properties of water‐soluble polyester surfactants. I. Preparation and surface activity of poly (ethylene glycol) dimethyl 5‐sulfo‐isophthalate sodium salt polyester surfactants. Journal of applied polymer science, 86(11), 2727-2731.
42. Lee, H. T., Wu, S. Y., & Jeng, R. J. (2006). Effects of sulfonated polyol on the properties of the resultant aqueous polyurethane dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 276(1-3), 176-185..
43. Patil, P. D., Gude, V. G., Reddy, H. K., Muppaneni, T., & Deng, S. (2012). Biodiesel production from waste cooking oil using sulfuric acid and microwave irradiation processes. Journal of Environmental Protection, 3(1), 107.
44. Yu, G. W., Nie, J., Lu, L. G., Wang, S. P., Li, Z. G., & Lee, M. R. (2017). Transesterification of soybean oil by using the synergistic microwave-ultrasonic irradiation. Ultrasonics sonochemistry, 39, 281-290.
45. Hsiao, M. C., Lin, C. C., & Chang, Y. H. (2011). Microwave irradiation-assisted transesterification of soybean oil to biodiesel catalyzed by nanopowder calcium oxide. Fuel, 90(5), 1963-1967.
46. Patil, P., Gude, V. G., Pinappu, S., & Deng, S. (2011). Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions. Chemical Engineering Journal, 168(3), 1296-1300.
47. Zhang, S., Zu, Y. G., Fu, Y. J., Luo, M., Zhang, D. Y., & Efferth, T. (2010). Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresource technology, 101(3), 931-936.
48. Wang, S., Xu, L., Okoye, P. U., Li, S., & Tian, C. (2018). Microwave-assisted transesterification of glycerol with dimethyl carbonate over sodium silicate catalyst in the sealed reaction system. Energy conversion and management, 164, 543-551.
49. Teng, W. K., Ngoh, G. C., Yusoff, R., & Aroua, M. K. (2016). Microwave-assisted transesterification of industrial grade crude glycerol for the production of glycerol carbonate. Chemical Engineering Journal, 284, 469-477.
50. Yadav, G. D., Hude, M. P., & Talpade, A. D. (2015). Microwave assisted process intensification of lipase catalyzed transesterification of 1, 2 propanediol with dimethyl carbonate for the green synthesis of propylene carbonate: Novelties of kinetics and mechanism of consecutive reactions. Chemical Engineering Journal, 281, 199-208.
51. Muley, P. D., & Boldor, D. (2013). Scale-up of a continuous microwave-assisted transesterification process of soybean oil for biodiesel production. Transactions of the ASABE, 56(5), 1847-1854.
52. El Sherbiny, S. A., Refaat, A. A., & El Sheltawy, S. T. (2010). Production of biodiesel using the microwave technique. Journal of Advanced Research, 1(4), 309-314.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *