帳號:guest(3.142.245.40)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉青衍
作者(外文):Yeh, Ching-Yen
論文名稱(中文):生物啟發奈米複合水膠作為單次施打疫苗於原位募集宿主免疫細胞以引發長效體液免疫反應
論文名稱(外文):Single-injecting, bioinspired nanocomposite hydrogel that can recruit host immune cells in situ to elicit potent and long-lasting humoral immune responses
指導教授(中文):宋信文
指導教授(外文):Sung, Hsing-Wen
口試委員(中文):劉培毅
張燕
糜福龍
口試委員(外文):Liu, Pei-Yi
Chang, Yen
Mi, Fu-Lung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032533
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:55
中文關鍵詞:奈米複合水膠系統單次施打疫苗疫苗投遞鄰苯二酚佐劑
外文關鍵詞:nanocomposite hydrogelsingle-injection vaccinevaccine deliverycatecholadjuvant
相關次數:
  • 推薦推薦:0
  • 點閱點閱:794
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在現今常見的疫苗療程中,病人需要藉由多次性施打疫苗來引發一個強健的保護性免疫反應。在發展中的國家因為其醫療保健資源本身有限,在接種疫苗的過程中時常面臨許多阻礙。因此,通過控制蛋白質藥物的釋放來開發一個單次施打疫苗,模擬現今醫療上常見的初次免疫/加強免疫的設計方式,將會是一種可行的改善方式。
在本文中,將鄰苯二酚官能化的透明質酸水膠(HA-CA hydrogel)和內部包載卵清蛋白(OVA)之三甲基化幾丁聚醣奈米粒子(TMC/NPs)所製備而成的奈米複合水膠系統(NPs-Gel),可以作為一個單次施打疫苗。在小鼠皮下接種奈米複合水膠後,原先包裹在水膠中但與水膠間沒有任何共價鍵或其他特異性相互作用的奈米粒子會迅速釋放,被水膠周遭的抗原呈現細胞所吞噬,可做為引發抗原特異性體液免疫反應的初始引發劑量;通過共價鍵或靜電相互作用力而固定在水膠內的奈米粒子,可被募集而來的抗原呈現細胞吞噬後,作為提升免疫反應的加強免疫劑量。
實驗結果顯示,接種單次施打奈米複合水膠能產生顯著的抗原特異性免疫球蛋白。證實本文所開發的奈米複合水膠系統可以做為一個有效的單次施打疫苗,進而引發強效且持久的體液免疫反應。
In developing countries, vaccination is hampered mainly due to the limited access to healthcare to receive multiple doses of vaccine that is necessary for protective immunity. Thus, development of single-injection vaccine that can mimic the prime/boost vaccine regimens by controlling the delivery of protein can be an alternative approach.
Herein, a nanocomposite hydrogel system (NPs-Gel) that is prepared by entrapment of ovalbumin (OVA) loaded N-trimethyl chitosan nanoparticles (TMC/NPs) inside the catechol-functionalized hyaluronic acid hydrogel (CA-HA hydrogel) is proposed as a single-dose auto-booster vaccine. Upon subcutaneous vaccination, the NPs encapsulated in the hydrogel without any covalent linkage or other specific interactions are released rapidly, serving as an initial priming dose for eliciting antigen-specific humoral immune responses. The NPs that are immobilized inside the hydrogel through covalent or electrostatic interactions are ingested by the recruited antigen-presenting cells (APCs), acting as auto-booster doses for sustaining immune response.
The analytical data indicate that a single injection of nanocomposite hydrogel can induce a significantly higher antigen-specific IgG immune response. And these results suggest that nanocomposite hydrogel system developed herein can served as an effective single-injection vaccine for triggering long-lasting humoral responses.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
1.1 傳統疫苗 1
1.2 開發單次施打疫苗的重要性 1
1.3 次單位疫苗(Subunit Vaccine) 2
1.4 顆粒化疫苗(Particulate Vaccine) 3
1.5單次施打疫苗之發展 4
1.6 N-三甲基幾丁聚醣 (N-trimethyl chitosan) 5
1.7 鄰苯二酚官能化透明質酸水膠 7
1.8 研究目的與實驗設計 8
1.9 實驗流程設計圖 11
第二章 實驗材料與方法 12
2.1 實驗材料 12
2.2 N-三甲基幾丁聚醣的製備 12
2.3 N-三甲基幾丁聚醣奈米粒子的製備 13
2.4 接枝鄰苯二酚之透明質酸的製備 14
2.5 奈米複合水膠的製備 15
2.6 藥物釋放檢測 15
2.7 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 16
2.8 流變儀測量 16
2.9 壓縮楊氏模量(Compressive Young’s Modulus) 16
2.10 澎潤度(Swelling ratios, Qs) 17
2.11 細胞毒性測試 17
2.12 實驗動物 18
2.13 骨髓衍生樹突狀細胞(BMDCs)的培養 18
2.14 骨髓衍生樹突細胞吞噬實驗 19
2.15 共軛焦顯微鏡(Confocal Laser Scanning Microscopy, CLSM) 20
2.16 骨髓衍生樹突細胞活化實驗 21
2.17 細胞浸潤實驗 22
2.18 奈米複合水膠的降解及毒性實驗 22
2.19 抗原特異性抗體反應 23
2.20 統計分析 23
第三章 實驗結果與討論 24
3.1 N-三甲基幾丁聚醣奈米粒子之材料特性及製備 24
3.2 鄰苯二酚官能化透明質酸水膠之材料特性及製備 27
3.3 奈米複合水膠之成分對於N-三甲基幾丁聚醣奈米粒子釋放之影響 30
3.4 奈米複合水膠的特性 33
3.5 奈米複合水膠的細胞毒性實驗 38
3.6 骨髓衍生樹突狀細胞吞噬N-三甲基幾丁聚醣奈米粒子的實驗 39
3.7 奈米複合水膠刺激活化骨髓衍生樹突狀細胞之能力 41
3.8 奈米複合水膠系統在活體試驗中募集細胞浸潤之探討 43
3.9 奈米複合水膠在體內降解的情況及生物體毒性實驗 46
3.10 奈米複合水膠系統引發卵清蛋白抗原特異性抗體免疫反應 48
第四章 結論 51
參考文獻 52
1. Lee, S. and M.T. Nguyen, Recent advances of vaccine adjuvants for infectious diseases. Immune Netw, 2015. 15(2): p. 51-7.
2. MacDonald, L.D., et al., Efficacy of a single dose hepatitis B depot vaccine. Vaccine, 2010. 28(44): p. 7143-5.
3. Walters, A.A., et al., Next generation vaccines: single-dose encapsulated vaccines for improved global immunisation coverage and efficacy. J Pharm Pharmacol, 2015. 67(3): p. 400-8.
4. Desai, K.G. and S.P. Schwendeman, Active self-healing encapsulation of vaccine antigens in PLGA microspheres. J Control Release, 2013. 165(1): p. 62-74.
5. Zheng, X., et al., Alginate-chitosan-PLGA composite microspheres enabling single-shot hepatitis B vaccination. AAPS J, 2010. 12(4): p. 519-24.
6. Watkins, H.C., et al., A single dose and long lasting vaccine against pandemic influenza through the controlled release of a heterospecies tandem M2 sequence embedded within detoxified bacterial outer membrane vesicles. Vaccine, 2017. 35(40): p. 5373-5380.
7. Vela Ramirez, J.E., L.A. Sharpe, and N.A. Peppas, Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev, 2017. 114: p. 116-131.
8. Irvine, D., Material aid for vaccines. Nat Mater, 2018. 17(6): p. 472-473.
9. Bobbala, S. and S. Hook, Is there an optimal formulation and delivery strategy for subunit vaccines? Pharm Res, 2016. 33(9): p. 2078-97.
10. Zhao, L., et al., Nanoparticle vaccines. Vaccine, 2014. 32(3): p. 327-37.
11. Reddy, S.T., et al., Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol, 2007. 25(10): p. 1159-64.
12. Demento, S.L., et al., Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials, 2012. 33(19): p. 4957-64.
13. Jaganathan, K.S., et al., Development of a single-dose stabilized poly(D,L-lactic-co-glycolic acid) microspheres-based vaccine against hepatitis B. J Pharm Pharmacol, 2004. 56(10): p. 1243-50.
14. McHugh, K.J., et al., Single-injection vaccines: progress, challenges, and opportunities. J Control Release, 2015. 219: p. 596-609.
15. Tzeng, S.Y., et al., Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response. Proc Natl Acad Sci U S A, 2018. 115(23): p. E5269-E5278.
16. Senel, S. and S.J. McClure, Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev, 2004. 56(10): p. 1467-80.
17. Van der Lubben, I.M., et al., Chitosan for mucosal vaccination. Adv Drug Deliv Rev, 2001. 52(2): p. 139-44.
18. Illum, L., Chitosan and its use as a pharmaceutical excipient. Pharm Res, 1998. 15(9): p. 1326-31.
19. Mi, F.L., et al., Oral delivery of peptide drugs using nanoparticles self-assembled by poly(gamma-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjug Chem, 2008. 19(6): p. 1248-55.
20. Lim, D.G., et al., One-pot synthesis of dopamine-conjugated hyaluronic acid/polydopamine nanocomplexes to control protein drug release. Int J Pharm, 2018. 542(1-2): p. 288-296.
21. Tripodo, G., et al., Hyaluronic acid and its derivatives in drug delivery and imaging: recent advances and challenges. Eur J Pharm Biopharm, 2015. 97(Pt B): p. 400-16.
22. Shin, J., et al., Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy. Advanced Functional Materials, 2015. 25(25): p. 3814-3824.
23. Lee, H., N.F. Scherer, and P.B. Messersmith, Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci U S A, 2006. 103(35): p. 12999-3003.
24. Polnok, A., et al., Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 57(1): p. 77-83.
25. Seidlits, S.K., et al., The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials, 2010. 31(14): p. 3930-40.
26. Chiu, Y.L., et al., pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials, 2009. 30(28): p. 4877-88.
27. Lutz, M.B., et al., An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods, 1999. 223(1): p. 77-92.
28. Morgan, E., et al., Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin Immunol, 2004. 110(3): p. 252-66.
29. Song, H., et al., Injectable polypeptide hydrogel for dual-delivery of antigen and TLR3 agonist to modulate dendritic cells in vivo and enhance potent cytotoxic T-lymphocyte response against melanoma. Biomaterials, 2018. 159: p. 119-129.
30. Lee, Y., et al., Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv Mater, 2008. 20(21): p. 4154-4157.
31. Li, M., et al., Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J Immunol, 2001. 166(10): p. 6099-103.
32. Yang, J., et al., Reaction pathways in catechol/primary amine mixtures: a window on crosslinking chemistry. PLoS One, 2016. 11(12): p. e0166490.
33. Buwalda, S.J., T. Vermonden, and W.E. Hennink, Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules, 2017. 18(2): p. 316-330.
34. Patenaude, M., et al., Tuning gelation time and morphology of injectable hydrogels using ketone-hydrazide cross-linking. Biomacromolecules, 2014. 15(3): p. 781-90.
35. Guilliams, M., et al., Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol, 2014. 14(8): p. 571-8.
36. Sallusto, F., et al., From vaccines to memory and back. Immunity, 2010. 33(4): p. 451-63.
37. Coffman, R.L., A. Sher, and R.A. Seder, Vaccine adjuvants: putting innate immunity to work. Immunity, 2010. 33(4): p. 492-503.
38. Liu, Z. and P.A. Roche, Macropinocytosis in phagocytes: regulation of MHC class-II-restricted antigen presentation in dendritic cells. Front Physiol, 2015. 6: p. 1.
39. Bal, S.M., et al., Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations. J Control Release, 2010. 142(3): p. 374-83.
40. Ma, Y., et al., The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses. Nanoscale, 2011. 3(5): p. 2307-14.
41. Mellman, I. and R.M. Steinman, Dendritic cells: specialized and regulated antigen processing machines. Cell, 2001. 106(3): p. 255-8.
42. Wang, Y.C., et al., Lipopolysaccharide-induced maturation of bone marrow-derived dendritic cells is regulated by notch signaling through the up-regulation of CXCR4. J Biol Chem, 2009. 284(23): p. 15993-6003.
43. Anderson, J.M., A. Rodriguez, and D.T. Chang, Foreign body reaction to biomaterials. Semin Immunol, 2008. 20(2): p. 86-100.
44. Helming, L., Inflammation: cell recruitment versus local proliferation. Curr Biol, 2011. 21(14): p. R548-50.
45. Liu, Y., et al., In situ modulation of dendritic cells by injectable thermosensitive hydrogels for cancer vaccines in mice. Biomacromolecules, 2014. 15(10): p. 3836-45.
46. Moran, H.B.T., et al., Immunomodulatory properties of chitosan polymers. Biomaterials, 2018. 184: p. 1-9.
47. Luo, Z., et al., Microbial synthesis of poly-gamma-glutamic acid: current progress, challenges, and future perspectives. Biotechnol Biofuels, 2016. 9: p. 134.
48. Burdick, J.A. and G.D. Prestwich, Hyaluronic acid hydrogels for biomedical applications. Adv Mater, 2011. 23(12): p. H41-56.
49. De Gregorio, E., E. Tritto, and R. Rappuoli, Alum adjuvanticity: unraveling a century old mystery. Eur J Immunol, 2008. 38(8): p. 2068-71.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *