帳號:guest(18.227.111.30)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張証彥
作者(外文):Chang, Cheng-Yen
論文名稱(中文):以無模板溶凝膠法製備應用於鋰電池開發之奈米多孔固態電解質
論文名稱(外文):Nanoporous Solid Electrolytes for Lithium Ion Battery from Template-Free Sol-Gel Reaction
指導教授(中文):何榮銘
指導教授(外文):Ho, Rong-Ming
口試委員(中文):蔡敬誠
蔣酉旺
薛涵宇
口試委員(外文):Tsai, Jing-Cherng
Chian, Yeo-Wan
Hsueh, Han-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032523
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:76
中文關鍵詞:奈米多孔鋰鑭鋯鋁氧氧化物鋰離子電池固態電解質無模板溶凝膠反應凝膠誘發之相分離離相分解
外文關鍵詞:Nanoporous LLAZOLithium ion batterySolid electrolyteTemplate-free sol-gel reactionGelation-induced phase separationSpinodal decomposition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:223
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現今,全固態鋰離子電池展現出十足發展潛力成為下世代的能源
儲存裝置,尤其是在電動車上的應用備受關注。在所有型態的固態鋰
電池中,石榴石型固態電解質有望可達成所有電動車上必要的應用條
件。本研究之目標為開發具奈米網狀結構的鋰鑭鋯鋁氧氧化物(石榴
石型電解質)作為鋰電池之固態電解質。首先藉由溶凝膠法製備石榴
石型電解質前驅物過程之交連誘發相分離行為,獲得奈米網狀之結構。
反應中,可經由反應物酸鹼值與溫度的調控,有效達到溶凝膠反應中
水解及縮合速率之最佳化條件,即可在無模板的條件下,生成溶凝膠
雙連續相,待移除溶液後,成功獲得可控制孔洞大小以及孔隙率的奈
米網狀鋰鑭鋯鋁氧氧化物前驅物。若於反應中摻入鋰與鋁進行摻雜再
經研磨形成奈米多孔鋰鑭鋯鋁氧氧化物微米粉末,與星狀聚乙二醇混
合後,可成功製備混成固態電解質,相比於傳統的高分子固態電解質,
於室溫下,將擁有更高的離子傳導率,同時,將具備更高的硬度模數,
以期形成全固態鋰電池的所需之電解質層。
Among all kinds of solid state lithium ion battery (LIB) for
next-generation energy storage, the one with garnet-type electrolytes provides the feasibility to fulfill the criteria for the EV applications. Herein, we aim to fabricate nanonetwork-structured Li6.06La3Zr2Al0.196O12 (LLAZO) (a Garnet-type electrolyte) through a template-free sol-gel reaction to give nanoporous LLAZO spheres after milling. Subsequently, those nanoporous spheres will bind with star-shape polyethylene glycol
(s-PEG) to create a new-type solid electrolytes with excellent toughness and high output performances. By taking advantage of gelation-induced phase separation, network-structured LLAZO precursors (i.e., La2Zr2O7) could be successfully fabricated through spinodal decomposition from sol-gel reaction. With precise temperature and pH value control for the sol-gel reaction through hydrolysis and condensation, a spontaneous phase separation of LLAZO precursor gels from solution during sol-gel reaction leads to the formation of co-continuous texture through morphological evolution. After removal of the residual solution, free-standing nanonetwork-structured LLAZO precursors could be formed to give nanoporous LLAZO precursors with controlled pore size and porosity. By introducing Li and Al ions into the sol-gel reaction, the aimed phase separation could also be achieved to give the formation of nanoporous cubic-type LLAZO spheres followed by milling. With blending of the fabricated spheres and s-PEG, the hybrid electrolytes fabricated exhibits high ion conductivity and theoretical high modulus under ambient conditions, giving appealing properties as solid state
electrolytes for LIB applications.
Abstract……………………………………………………….……..…..I
List of Tables………………………………..……………...…………. VI
Figure Caption……………………………………………….......……VII
Chapter 1 Introduction………………………………………..………..1
1.1 All Solid-State lithium Ion Battery…………………......…..…..1
1.2 Solid Electrolytes…………….…………………….…………...3
1.2.1 Polymer Electrolytes……...…………………..…………..4
1.2.2 Inorganic Electrolytes……………………………….……8
1.2.3 Nanohybrid Solid Electrolytes…………………………..10
1.3 Nanonetwork Materials for SSBs..…………………….……...13
1.3.1 Nanonetwork Structures for Solid Electrolytes...…...…..14
1.3.2 Recent Development of Nanonetwork Electrolytes……..16
1.4 Fabrication of Nanostructured Materials……………………...19
1.4.1 Templated Synthesis from Hard Template…………........19
1.4.2 Templated synthesis from Soft Template………...….…..21
1.4.3 Polymerization-Induced Microphase Separation……..…23
1.4.4 Gelation-Induced Phase Separation…………...……...…25
Chapter 2 Objectives……………………………………..………...…32
Chapter 3 Experimental……………………………………..…...…...34
3.1 Sample Preparation…………………………………………....34
3.1.1 Synthesis of LLAZO precursors…………………...……34
3.1.2 Doping of lithium and aluminum ions……….………….35
3.1.3 Calcination for Cubic-type LLAZO……………….…....36
3.2 Electrochemical Testing…………………………………….…37
3.2.1 Membrane Preparation……………………………….….37
3.2.2 Lithium Ion Conductivity Measurements…………….....40
3.3 Instrumentation………………….…………………….....……40
Chapter 4 Results and Discussion………...……………………..……42
4.1 Sol-Gel Reaction of LLAZO Precursors………………………42
4.1.1 pH Effects…………………………………….……...….42
4.1.2 Chelating Effects…………………...………….…...……45
4.1.3 Temperature Effects…………………………………..…47
4.2 Morphologies and Characterization of Forming LLAZO.….....50
4.2.1 Morphological evolution from Spinodal decomposition...50
4.2.2 Mechanisms for Gelation-Induced Phase Separation…....53
4.2.3 Characterization of Porous LLAZO spheres.....……...…57
4.3 Network Electrolytes for SSBs………………………………..61
Chapter 5 Conclusions and Perspectives…………………….….…...67
References………………………………..…………………...….….....69
1. Scrosati, B. J. J. o. A. E., Recent advances in lithium solid state batteries. 1972, 2, 231-238.
2. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X., A
review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science 2014, 7, 3857-3886.
3. Antolini, E., LiCoO2: formation, structure, lithium and oxygen
nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 2004, 170, 159-171.
4. Armstrong, A. R.; Robertson, A. D.; Bruce, P. G., Structural
transformation on cycling layered Li(Mn1-yCoy)O2 cathode materials.
Electrochimica Acta 1999, 45, 285-294.
5. Thackeray, M. M.; de Kock, A.; David, W. I. F., Synthesis and
structural characterization of defect spinels in the
lithium-manganese-oxide system. Materials Research Bulletin 1993, 28, 1041-1049.
6. Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.;
Goodenough, J. B., Effect of Structure on the Fe3+ / Fe2+ Redox Couple in Iron Phosphates. 1997, 144, 1609-1613.
7. Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical Reviews 2014, 114, 11503-11618.
8. Fenton, D. E.; Parker, J. M.; Wright, P. V., Complexes of alkali
metal ions with poly(ethylene oxide). Polymer 1973, 14, 589.
9. Zhang, W.-J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources 2011, 196, 13-24.
10. Monroe, C.; Newman, J., The Impact of Elastic Deformation on
Deposition Kinetics at Lithium/Polymer Interfaces. 2005, 152,
A396-A404.
11. Osada, I.; de Vries, H.; Scrosati, B.; Passerini, S.,
Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. 2016, 55, 500-513.
12. Park, M. J.; Choi, I.; Hong, J.; Kim, O., Polymer electrolytes
integrated with ionic liquids for future electrochemical devices. 2013, 129 , 2363-2376.
13. Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S., Safer
Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. 2015, 8, 2154-2175.
14. Wei, T. C.; Wan, C. C.; Wang, Y. Y., Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin
oxide glass as counterelectrode for dye-sensitized solar cells. 2006, 88, 103122.
15. Shi, Y.; Wang, M.; Ma, C.; Wang, Y.; Li, X.; Yu, G., A
Conductive Self-Healing Hybrid Gel Enabled by Metal–Ligand
Supramolecule and Nanostructured Conductive Polymer. Nano Letters
2015, 15, 6276-6281.
16. Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M.; Pei, Z.; Wang,
Z.; Xue, Q.; Xie, X.; Zhi, C., A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nature Communications 2015, 6, 10310.
17. Trivedi, T. J.; Bhattacharjya, D.; Yu, J.-S.; Kumar, A.,
Functionalized Agarose Self-Healing Ionogels Suitable for
Supercapacitors. 2015, 8, 3294-3303.
18. Hallinan, D. T.; Mullin, S. A.; Stone, G. M.; Balsara, N. P.,
Lithium Metal Stability in Batteries with Block Copolymer Electrolytes. 2013, 160, A464-A470.
19. Lightfoot, P.; Mehta, M. A.; Bruce, P. G., Crystal Structure of the Polymer Electrolyte Poly(ethylene oxide)3:LiCF3SO3. 1993, 262,
883-885.
20. Lascaud, S.; Perrier, M.; Vallee, A.; Besner, S.; Prud'homme,
J.; Armand, M., Phase Diagrams and Conductivity Behavior of
Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes. Macromolecules 1994, 27, 7469-7477.
21. Panday, A.; Mullin, S.; Gomez, E. D.; Wanakule, N.; Chen, V.
L.; Hexemer, A.; Pople, J.; Balsara, N. P., Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes. Macromolecules 2009, 42, 4632-4637.
22. Wang, C.; Sakai, T.; Watanabe, O.; Hirahara, K.; Nakanishi, T.,
All Solid-State Lithium-Polymer Battery Using a Self-Cross-Linking
Polymer Electrolyte. 2003, 150, A1166-A1170.
23. Gorecki, W.; Andreani, R.; Berthier, C.; Armand, M.; Mali,
M.; Roos, J.; Brinkmann, D., NMR, DSC, and conductivity study of a
poly(ethylene oxide) complex electrolyte : PEO(LiClO4)x. Solid State
Ionics 1986, 18-19, 295-299.
24. Weston, J. E.; Steele, B. C. H., Thermal history — conductivity
relationship in lithium salt-poly (ethylene oxide) complex polymer
electrolytes. Solid State Ionics 1981, 2, 347-354.
25. Kasper, H. M., Series of rare earth garnets Ln3+3M2Li+3O12 (M=Te,W). Inorganic Chemistry 1969, 8, 1000-1002.
26. Thangadurai, V.; Weppner, W., Li6ALa2Ta2O12 (A = Sr, Ba): Novel
Garnet-Like Oxides for Fast Lithium Ion Conduction. 2005, 15, 107-112.
27. Murugan, R.; Thangadurai, V.; Weppner, W., Fast Lithium Ion
Conduction in Garnet-Type Li7La3Zr2O12. 2007, 46, 7778-7781.
28. Geiger, C. A.; Alekseev, E.; Lazic, B.; Fisch, M.; Armbruster,
T.; Langner, R.; Fechtelkord, M.; Kim, N.; Pettke, T.; Weppner,
W., Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast
Lithium-Ion Conductor. Inorganic Chemistry 2011, 50, 1089-1097.
29. Rangasamy, E.; Wolfenstine, J.; Sakamoto, J., The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics 2012, 206, 28-32.
30. Buschmann, H.; Dölle, J.; Berendts, S.; Kuhn, A.; Bottke, P.;
Wilkening, M.; Heitjans, P.; Senyshyn, A.; Ehrenberg, H.; Lotnyk,
A.; Duppel, V.; Kienle, L.; Janek, J., Structure and dynamics of the
fast lithium ion conductor “Li7La3Zr2O12”. Physical Chemistry Chemical Physics 2011, 13, 19378-19392.
31. Li, Y.; Wang, C.-A.; Xie, H.; Cheng, J.; Goodenough, J. B.,
High lithium ion conduction in garnet-type Li6La3ZrTaO12.
Electrochemistry Communications 2011, 13, 1289-1292.
32. Cussen, E. J., The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. Chemical
Communications 2006, 412-413.
33. Aspnes, D. E., Optical properties of thin films. Thin Solid Films 1982, 89, 249-262.
34. Pan, Q.; Smith, D. M.; Qi, H.; Wang, S.; Li, C. Y., Hybrid
Electrolytes with Controlled Network Structures for Lithium Metal
Batteries. 2015, 27, 5995-6001.
35. Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.;
Goodenough, J. B., PEO/garnet composite electrolytes for solid-state
lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176-184.
36. Liu, W.; Lee, S. W.; Lin, D.; Shi, F.; Wang, S.; Sendek, A.
D.; Cui, Y., Enhancing ionic conductivity in composite polymer
electrolytes with well-aligned ceramic nanowires. Nature Energy 2017, 2, 17035.
37. Smith, D. M.; Pan, Q.; Cheng, S.; Wang, W.; Bunning, T. J.;
Li, C. Y., Nanostructured, Highly Anisotropic, and Mechanically Robust Polymer Electrolyte Membranes via Holographic Polymerization. 2018, 5, 1700861.
38. Hallinan, D. T.; Villaluenga, I.; Balsara, N. P., Polymer and
composite electrolytes. MRS Bulletin 2018, 43, 759-767.
39. Liu, W.; Liu, N.; Sun, J.; Hsu, P.-C.; Li, Y.; Lee, H.-W.; Cui,
Y., Ionic Conductivity Enhancement of Polymer Electrolytes with
Ceramic Nanowire Fillers. Nano Letters 2015, 15, 2740-2745.
40. Chopade, S. A.; Au, J. G.; Li, Z.; Schmidt, P. W.; Hillmyer, M.
A.; Lodge, T. P., Robust Polymer Electrolyte Membranes with High
Ambient-Temperature Lithium-Ion Conductivity via Polymerization-Induced Microphase Separation. ACS Applied Materials
& Interfaces 2017, 9, 14561-14565.
41. Furneaux, R. C.; Rigby, W. R.; Davidson, A. P., The formation of
controlled-porosity membranes from anodically oxidized aluminium.
Nature 1989, 337, 147.
42. Liu, Y.; Zhao, M.; Bergbreiter, D. E.; Crooks, R. M.,
pH-Switchable, Ultrathin Permselective Membranes Prepared from
Multilayer Polymer Composites. Journal of the American Chemical
Society 1997, 119, 8720-8721.
43. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.;
Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of
Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. 1998, 279,
548-552.
44. Hsueh, H.-Y.; Yao, C.-T.; Ho, R.-M., Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. Chemical Society Reviews 2015, 44, 1974-2018.
45. Hsueh, H.-Y.; Chen, H.-Y.; She, M.-S.; Chen, C.-K.; Ho,
R.-M.; Gwo, S.; Hasegawa, H.; Thomas, E. L., Inorganic Gyroid with
Exceptionally Low Refractive Index from Block Copolymer Templating.
Nano Letters 2010, 10, 4994-5000.
46. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.;
Adamson, D. H., Block Copolymer Lithography: Periodic Arrays of ~1011 Holes in 1 Square Centimeter. 1997, 276, 1401-1404.
47. Chao, C.-C.; Ho, R.-M.; Georgopanos, P.; Avgeropoulos, A.;
Thomas, E. L., Silicon oxy carbide nanorings from polystyrene-b-polydimethylsiloxane diblock copolymer thin films. Soft
Matter 2010, 6, 3582-3587.
48. Cheng, J. Y.; Ross, C. A.; Chan, V. Z.-H.; Thomas, E. L.;
Lammertink, R. G. H.; Vancso, G. J., Formation of a Cobalt Magnetic
Dot Array via Block Copolymer Lithography. 2001, 13, 1174-1178.
49. Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.;
Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell, T. P.,
Nanoscopic Templates from Oriented Block Copolymer Films. Advanced
Materials 2000, 12, 787-791.
50. Hsueh, H.-Y.; Ho, R.-M., Bicontinuous Ceramics with High Surface
Area from Block Copolymer Templates. Langmuir 2012, 28, 8518-8529.
51. Cheng, C.-F.; Hsueh, H.-Y.; Lai, C.-H.; Pan, C.-J.; Hwang,
B.-J.; Hu, C.-C.; Ho, R.-M., Nanoporous gyroid platinum with high
catalytic activity from block copolymer templates via electroless plating. Npg Asia Materials 2015, 7, e170.
52. Crossland, E. J. W.; Kamperman, M.; Nedelcu, M.; Ducati, C.;
Wiesner, U.; Smilgies, D. M.; Toombes, G. E. S.; Hillmyer, M. A.;
Ludwigs, S.; Steiner, U.; Snaith, H. J., A Bicontinuous Double Gyroid Hybrid Solar Cell. Nano Letters 2009, 9, 2807-2812.
53. Galusha, J. W.; Jorgensen, M. R.; Bartl, M. H., Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates. 2010, 22, 107-110.
54. Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K.,
Design and Preparation of Porous Polymers. Chemical Reviews 2012, 112, 3959-4015.
55. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D.,
Nonionic Triblock and Star Diblock Copolymer and Oligomeric
Surfactant Syntheses of Highly Ordered, Hydrothermally Stable,
Mesoporous Silica Structures. Journal of the American Chemical Society 1998, 120, 6024-6036.
56. Zhang, F.; Meng, Y.; Gu, D.; Yan; Yu, C.; Tu, B.; Zhao, D., A
Facile Aqueous Route to Synthesize Highly Ordered Mesoporous
Polymers and Carbon Frameworks with Ia3̄d Bicontinuous Cubic
Structure. Journal of the American Chemical Society 2005, 127,
13508-13509.
57. Tian, B.; Liu, X.; Solovyov, L. A.; Liu, Z.; Yang, H.; Zhang,
Z.; Xie, S.; Zhang, F.; Tu, B.; Yu, C.; Terasaki, O.; Zhao, D.,
Facile Synthesis and Characterization of Novel Mesoporous and
Mesorelief Oxides with Gyroidal Structures. Journal of the American
Chemical Society 2004, 126, 865-875.
58. Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Yang, H.; Li, Z.; Yu,
C.; Tu, B.; Zhao, D., Ordered Mesoporous Polymers and Homologous
Carbon Frameworks: Amphiphilic Surfactant Templating and Direct
Transformation. 2005, 44, 7053-7059.
59. Uehara, H.; Yoshida, T.; Kakiage, M.; Yamanobe, T.; Komoto,
T.; Nomura, K.; Nakajima, K.; Matsuda, M., Nanoporous
Polyethylene Film Prepared from Bicontinuous Crystalline/Amorphous
Structure of Block Copolymer Precursor. Macromolecules 2006, 39,
3971-3974.
60. Chen, L.; Phillip, W. A.; Cussler, E. L.; Hillmyer, M. A., Robust Nanoporous Membranes Templated by a Doubly Reactive Block
Copolymer. Journal of the American Chemical Society 2007, 129,
13786-13787.
61. Pitet, L. M.; Amendt, M. A.; Hillmyer, M. A., Nanoporous Linear
Polyethylene from a Block Polymer Precursor. Journal of the American
Chemical Society 2010, 132, 8230-8231.
62. Li, L.; Schulte, L.; Clausen, L. D.; Hansen, K. M.; Jonsson, G.
E.; Ndoni, S., Gyroid Nanoporous Membranes with Tunable Permeability. ACS Nano 2011, 5, 7754-7766.
63. Nakanishi, K.; Soga, N., Phase separation in silica sol-gel system containing polyacrylic acid I. Gel formaation behavior and effect of solvent composition. Journal of Non-Crystalline Solids 1992, 139, 1-13.
64. Nakanishi, K.; Soga, N., Phase Separation in Gelling Silica–Organic Polymer Solution: Systems Containing Poly(sodium styrenesulfonate). 1991, 74, 2518-2530.
65. Seo, M.; Hillmyer, M. A., Reticulated Nanoporous Polymers by
Controlled Polymerization-Induced Microphase Separation. 2012, 336,
1422-1425.
66. Motokawa, R.; Iida, Y.; Zhao, Y.; Hashimoto, T.; Koizumi, S.,
Living Polymerization Induced Macro- and Microdomain Investigated by
Focusing Ultra-small-angle Neutron Scattering. Polymer Journal 2007,
39, 1312.
67. Yamamoto, K.; Ito, E.; Fukaya, S.; Takagi, H., Phase-Separated
Conetwork Structure Induced by Radical Copolymerization of
Poly(dimethylsiloxane)-α,ω-diacrylate and N,N-Dimethylacrylamide.
Macromolecules 2009, 42, 9561-9567.
68. Moad, G.; Rizzardo, E.; Thang, S. H., Toward Living Radical
Polymerization. Accounts of Chemical Research 2008, 41, 1133-1142.
69. C. Jeffery Brinker, G. W. S., The Physics and Chemistry of Sol-Gel Processing. 1990.
70. Dong, H.; Brook, M. A.; Brennan, J. D., A New Route to
Monolithic Methylsilsesquioxanes: Gelation Behavior of
Methyltrimethoxysilane and Morphology of Resulting
Methylsilsesquioxanes under One-Step and Two-Step Processing.
Chemistry of Materials 2005, 17, 2807-2816.
71. Tanaka, N.; Kobayashi, H.; Nakanishi, K.; Minakuchi, H.;
Ishizuka, N. J. A. C., A new type of chromatographic support could lead to higher separation efficiencies. 2001, 73, 421A-429A.
72. Konishi, J.; Fujita, K.; Nakanishi, K.; Hirao, K., Monolithic TiO2 with Controlled Multiscale Porosity via a Template-Free Sol−Gel Process Accompanied by Phase Separation. Chemistry of Materials 2006, 18, 6069-6074.
73. Kokal, I.; Somer, M.; Notten, P. H. L.; Hintzen, H. T., Sol–gel
synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure. Solid State Ionics 2011, 185, 42-46.
74. Shin, D. O.; Oh, K.; Kim, K. M.; Park, K.-Y.; Lee, B.; Lee,
Y.-G.; Kang, K., Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction. Scientific Reports 2015, 5, 18053.
75. Kotobuki, M.; Kanamura, K.; Sato, Y.; Yoshida, T., Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. Journal of Power Sources 2011, 196, 7750-7754.
76. Rosenkiewitz, N.; Schuhmacher, J.; Bockmeyer, M.; Deubener, J.,
Nitrogen-free sol–gel synthesis of Al-substituted cubic garnet
Li7La3Zr2O12 (LLZO). Journal of Power Sources 2015, 278, 104-108.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *