|
1. Scrosati, B. J. J. o. A. E., Recent advances in lithium solid state batteries. 1972, 2, 231-238. 2. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science 2014, 7, 3857-3886. 3. Antolini, E., LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 2004, 170, 159-171. 4. Armstrong, A. R.; Robertson, A. D.; Bruce, P. G., Structural transformation on cycling layered Li(Mn1-yCoy)O2 cathode materials. Electrochimica Acta 1999, 45, 285-294. 5. Thackeray, M. M.; de Kock, A.; David, W. I. F., Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system. Materials Research Bulletin 1993, 28, 1041-1049. 6. Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B., Effect of Structure on the Fe3+ / Fe2+ Redox Couple in Iron Phosphates. 1997, 144, 1609-1613. 7. Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical Reviews 2014, 114, 11503-11618. 8. Fenton, D. E.; Parker, J. M.; Wright, P. V., Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589. 9. Zhang, W.-J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources 2011, 196, 13-24. 10. Monroe, C.; Newman, J., The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces. 2005, 152, A396-A404. 11. Osada, I.; de Vries, H.; Scrosati, B.; Passerini, S., Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. 2016, 55, 500-513. 12. Park, M. J.; Choi, I.; Hong, J.; Kim, O., Polymer electrolytes integrated with ionic liquids for future electrochemical devices. 2013, 129 , 2363-2376. 13. Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S., Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. 2015, 8, 2154-2175. 14. Wei, T. C.; Wan, C. C.; Wang, Y. Y., Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells. 2006, 88, 103122. 15. Shi, Y.; Wang, M.; Ma, C.; Wang, Y.; Li, X.; Yu, G., A Conductive Self-Healing Hybrid Gel Enabled by Metal–Ligand Supramolecule and Nanostructured Conductive Polymer. Nano Letters 2015, 15, 6276-6281. 16. Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M.; Pei, Z.; Wang, Z.; Xue, Q.; Xie, X.; Zhi, C., A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nature Communications 2015, 6, 10310. 17. Trivedi, T. J.; Bhattacharjya, D.; Yu, J.-S.; Kumar, A., Functionalized Agarose Self-Healing Ionogels Suitable for Supercapacitors. 2015, 8, 3294-3303. 18. Hallinan, D. T.; Mullin, S. A.; Stone, G. M.; Balsara, N. P., Lithium Metal Stability in Batteries with Block Copolymer Electrolytes. 2013, 160, A464-A470. 19. Lightfoot, P.; Mehta, M. A.; Bruce, P. G., Crystal Structure of the Polymer Electrolyte Poly(ethylene oxide)3:LiCF3SO3. 1993, 262, 883-885. 20. Lascaud, S.; Perrier, M.; Vallee, A.; Besner, S.; Prud'homme, J.; Armand, M., Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes. Macromolecules 1994, 27, 7469-7477. 21. Panday, A.; Mullin, S.; Gomez, E. D.; Wanakule, N.; Chen, V. L.; Hexemer, A.; Pople, J.; Balsara, N. P., Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes. Macromolecules 2009, 42, 4632-4637. 22. Wang, C.; Sakai, T.; Watanabe, O.; Hirahara, K.; Nakanishi, T., All Solid-State Lithium-Polymer Battery Using a Self-Cross-Linking Polymer Electrolyte. 2003, 150, A1166-A1170. 23. Gorecki, W.; Andreani, R.; Berthier, C.; Armand, M.; Mali, M.; Roos, J.; Brinkmann, D., NMR, DSC, and conductivity study of a poly(ethylene oxide) complex electrolyte : PEO(LiClO4)x. Solid State Ionics 1986, 18-19, 295-299. 24. Weston, J. E.; Steele, B. C. H., Thermal history — conductivity relationship in lithium salt-poly (ethylene oxide) complex polymer electrolytes. Solid State Ionics 1981, 2, 347-354. 25. Kasper, H. M., Series of rare earth garnets Ln3+3M2Li+3O12 (M=Te,W). Inorganic Chemistry 1969, 8, 1000-1002. 26. Thangadurai, V.; Weppner, W., Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet-Like Oxides for Fast Lithium Ion Conduction. 2005, 15, 107-112. 27. Murugan, R.; Thangadurai, V.; Weppner, W., Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. 2007, 46, 7778-7781. 28. Geiger, C. A.; Alekseev, E.; Lazic, B.; Fisch, M.; Armbruster, T.; Langner, R.; Fechtelkord, M.; Kim, N.; Pettke, T.; Weppner, W., Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor. Inorganic Chemistry 2011, 50, 1089-1097. 29. Rangasamy, E.; Wolfenstine, J.; Sakamoto, J., The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics 2012, 206, 28-32. 30. Buschmann, H.; Dölle, J.; Berendts, S.; Kuhn, A.; Bottke, P.; Wilkening, M.; Heitjans, P.; Senyshyn, A.; Ehrenberg, H.; Lotnyk, A.; Duppel, V.; Kienle, L.; Janek, J., Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Physical Chemistry Chemical Physics 2011, 13, 19378-19392. 31. Li, Y.; Wang, C.-A.; Xie, H.; Cheng, J.; Goodenough, J. B., High lithium ion conduction in garnet-type Li6La3ZrTaO12. Electrochemistry Communications 2011, 13, 1289-1292. 32. Cussen, E. J., The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. Chemical Communications 2006, 412-413. 33. Aspnes, D. E., Optical properties of thin films. Thin Solid Films 1982, 89, 249-262. 34. Pan, Q.; Smith, D. M.; Qi, H.; Wang, S.; Li, C. Y., Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries. 2015, 27, 5995-6001. 35. Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.; Goodenough, J. B., PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176-184. 36. Liu, W.; Lee, S. W.; Lin, D.; Shi, F.; Wang, S.; Sendek, A. D.; Cui, Y., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nature Energy 2017, 2, 17035. 37. Smith, D. M.; Pan, Q.; Cheng, S.; Wang, W.; Bunning, T. J.; Li, C. Y., Nanostructured, Highly Anisotropic, and Mechanically Robust Polymer Electrolyte Membranes via Holographic Polymerization. 2018, 5, 1700861. 38. Hallinan, D. T.; Villaluenga, I.; Balsara, N. P., Polymer and composite electrolytes. MRS Bulletin 2018, 43, 759-767. 39. Liu, W.; Liu, N.; Sun, J.; Hsu, P.-C.; Li, Y.; Lee, H.-W.; Cui, Y., Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers. Nano Letters 2015, 15, 2740-2745. 40. Chopade, S. A.; Au, J. G.; Li, Z.; Schmidt, P. W.; Hillmyer, M. A.; Lodge, T. P., Robust Polymer Electrolyte Membranes with High Ambient-Temperature Lithium-Ion Conductivity via Polymerization-Induced Microphase Separation. ACS Applied Materials & Interfaces 2017, 9, 14561-14565. 41. Furneaux, R. C.; Rigby, W. R.; Davidson, A. P., The formation of controlled-porosity membranes from anodically oxidized aluminium. Nature 1989, 337, 147. 42. Liu, Y.; Zhao, M.; Bergbreiter, D. E.; Crooks, R. M., pH-Switchable, Ultrathin Permselective Membranes Prepared from Multilayer Polymer Composites. Journal of the American Chemical Society 1997, 119, 8720-8721. 43. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. 1998, 279, 548-552. 44. Hsueh, H.-Y.; Yao, C.-T.; Ho, R.-M., Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. Chemical Society Reviews 2015, 44, 1974-2018. 45. Hsueh, H.-Y.; Chen, H.-Y.; She, M.-S.; Chen, C.-K.; Ho, R.-M.; Gwo, S.; Hasegawa, H.; Thomas, E. L., Inorganic Gyroid with Exceptionally Low Refractive Index from Block Copolymer Templating. Nano Letters 2010, 10, 4994-5000. 46. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H., Block Copolymer Lithography: Periodic Arrays of ~1011 Holes in 1 Square Centimeter. 1997, 276, 1401-1404. 47. Chao, C.-C.; Ho, R.-M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L., Silicon oxy carbide nanorings from polystyrene-b-polydimethylsiloxane diblock copolymer thin films. Soft Matter 2010, 6, 3582-3587. 48. Cheng, J. Y.; Ross, C. A.; Chan, V. Z.-H.; Thomas, E. L.; Lammertink, R. G. H.; Vancso, G. J., Formation of a Cobalt Magnetic Dot Array via Block Copolymer Lithography. 2001, 13, 1174-1178. 49. Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell, T. P., Nanoscopic Templates from Oriented Block Copolymer Films. Advanced Materials 2000, 12, 787-791. 50. Hsueh, H.-Y.; Ho, R.-M., Bicontinuous Ceramics with High Surface Area from Block Copolymer Templates. Langmuir 2012, 28, 8518-8529. 51. Cheng, C.-F.; Hsueh, H.-Y.; Lai, C.-H.; Pan, C.-J.; Hwang, B.-J.; Hu, C.-C.; Ho, R.-M., Nanoporous gyroid platinum with high catalytic activity from block copolymer templates via electroless plating. Npg Asia Materials 2015, 7, e170. 52. Crossland, E. J. W.; Kamperman, M.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D. M.; Toombes, G. E. S.; Hillmyer, M. A.; Ludwigs, S.; Steiner, U.; Snaith, H. J., A Bicontinuous Double Gyroid Hybrid Solar Cell. Nano Letters 2009, 9, 2807-2812. 53. Galusha, J. W.; Jorgensen, M. R.; Bartl, M. H., Diamond-Structured Titania Photonic-Bandgap Crystals from Biological Templates. 2010, 22, 107-110. 54. Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K., Design and Preparation of Porous Polymers. Chemical Reviews 2012, 112, 3959-4015. 55. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D., Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society 1998, 120, 6024-6036. 56. Zhang, F.; Meng, Y.; Gu, D.; Yan; Yu, C.; Tu, B.; Zhao, D., A Facile Aqueous Route to Synthesize Highly Ordered Mesoporous Polymers and Carbon Frameworks with Ia3̄d Bicontinuous Cubic Structure. Journal of the American Chemical Society 2005, 127, 13508-13509. 57. Tian, B.; Liu, X.; Solovyov, L. A.; Liu, Z.; Yang, H.; Zhang, Z.; Xie, S.; Zhang, F.; Tu, B.; Yu, C.; Terasaki, O.; Zhao, D., Facile Synthesis and Characterization of Novel Mesoporous and Mesorelief Oxides with Gyroidal Structures. Journal of the American Chemical Society 2004, 126, 865-875. 58. Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Yang, H.; Li, Z.; Yu, C.; Tu, B.; Zhao, D., Ordered Mesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic Surfactant Templating and Direct Transformation. 2005, 44, 7053-7059. 59. Uehara, H.; Yoshida, T.; Kakiage, M.; Yamanobe, T.; Komoto, T.; Nomura, K.; Nakajima, K.; Matsuda, M., Nanoporous Polyethylene Film Prepared from Bicontinuous Crystalline/Amorphous Structure of Block Copolymer Precursor. Macromolecules 2006, 39, 3971-3974. 60. Chen, L.; Phillip, W. A.; Cussler, E. L.; Hillmyer, M. A., Robust Nanoporous Membranes Templated by a Doubly Reactive Block Copolymer. Journal of the American Chemical Society 2007, 129, 13786-13787. 61. Pitet, L. M.; Amendt, M. A.; Hillmyer, M. A., Nanoporous Linear Polyethylene from a Block Polymer Precursor. Journal of the American Chemical Society 2010, 132, 8230-8231. 62. Li, L.; Schulte, L.; Clausen, L. D.; Hansen, K. M.; Jonsson, G. E.; Ndoni, S., Gyroid Nanoporous Membranes with Tunable Permeability. ACS Nano 2011, 5, 7754-7766. 63. Nakanishi, K.; Soga, N., Phase separation in silica sol-gel system containing polyacrylic acid I. Gel formaation behavior and effect of solvent composition. Journal of Non-Crystalline Solids 1992, 139, 1-13. 64. Nakanishi, K.; Soga, N., Phase Separation in Gelling Silica–Organic Polymer Solution: Systems Containing Poly(sodium styrenesulfonate). 1991, 74, 2518-2530. 65. Seo, M.; Hillmyer, M. A., Reticulated Nanoporous Polymers by Controlled Polymerization-Induced Microphase Separation. 2012, 336, 1422-1425. 66. Motokawa, R.; Iida, Y.; Zhao, Y.; Hashimoto, T.; Koizumi, S., Living Polymerization Induced Macro- and Microdomain Investigated by Focusing Ultra-small-angle Neutron Scattering. Polymer Journal 2007, 39, 1312. 67. Yamamoto, K.; Ito, E.; Fukaya, S.; Takagi, H., Phase-Separated Conetwork Structure Induced by Radical Copolymerization of Poly(dimethylsiloxane)-α,ω-diacrylate and N,N-Dimethylacrylamide. Macromolecules 2009, 42, 9561-9567. 68. Moad, G.; Rizzardo, E.; Thang, S. H., Toward Living Radical Polymerization. Accounts of Chemical Research 2008, 41, 1133-1142. 69. C. Jeffery Brinker, G. W. S., The Physics and Chemistry of Sol-Gel Processing. 1990. 70. Dong, H.; Brook, M. A.; Brennan, J. D., A New Route to Monolithic Methylsilsesquioxanes: Gelation Behavior of Methyltrimethoxysilane and Morphology of Resulting Methylsilsesquioxanes under One-Step and Two-Step Processing. Chemistry of Materials 2005, 17, 2807-2816. 71. Tanaka, N.; Kobayashi, H.; Nakanishi, K.; Minakuchi, H.; Ishizuka, N. J. A. C., A new type of chromatographic support could lead to higher separation efficiencies. 2001, 73, 421A-429A. 72. Konishi, J.; Fujita, K.; Nakanishi, K.; Hirao, K., Monolithic TiO2 with Controlled Multiscale Porosity via a Template-Free Sol−Gel Process Accompanied by Phase Separation. Chemistry of Materials 2006, 18, 6069-6074. 73. Kokal, I.; Somer, M.; Notten, P. H. L.; Hintzen, H. T., Sol–gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure. Solid State Ionics 2011, 185, 42-46. 74. Shin, D. O.; Oh, K.; Kim, K. M.; Park, K.-Y.; Lee, B.; Lee, Y.-G.; Kang, K., Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction. Scientific Reports 2015, 5, 18053. 75. Kotobuki, M.; Kanamura, K.; Sato, Y.; Yoshida, T., Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. Journal of Power Sources 2011, 196, 7750-7754. 76. Rosenkiewitz, N.; Schuhmacher, J.; Bockmeyer, M.; Deubener, J., Nitrogen-free sol–gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12 (LLZO). Journal of Power Sources 2015, 278, 104-108. |