帳號:guest(18.118.10.37)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝政達
作者(外文):Hsieh, Cheng-Ta
論文名稱(中文):聚乙烯塗佈靜電紡絲聚醯亞胺複合膜之製備與應用於鋰離子二次電池隔離膜之探討
論文名稱(外文):Preparation of Polyethylene-coated Electrospun Polyimide Composite Films for the Separator of Lithium-ion Batteries
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi-Chang
口試委員(中文):陳翰儀
潘詠庭
口試委員(外文):Chen, Han-Yi
Pan, Yung-Tin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032521
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:106
中文關鍵詞:鋰離子二次電池隔離膜聚醯亞胺靜電紡絲旋轉塗佈熱關閉充放電高電流密度機械強度改善共聚合二氧化矽
外文關鍵詞:Lithium-ion secondary batteryseparatorpolyimideelectrospinningspin-coatingthermal shutdowncharge-dischargehigh C-ratetensile strengthco-polymerizationsilica
相關次數:
  • 推薦推薦:0
  • 點閱點閱:444
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇研究探討鋰離子二次電池隔離膜的應用趨勢與改善方向,並
首次提出以靜電紡絲製備之聚醯亞胺(PI)薄膜為骨架,旋轉塗佈低密
度聚乙烯(LDPE)為功能性塗層之複合型隔離膜。此複合隔離膜結合靜
電紡絲聚醯亞胺薄膜高度熱穩定性、電解質潤濕性與優良離子導電性
等優點,以及聚乙烯材料在高溫時能發揮的熱關閉機制,達到改善傳
統商用聚烯烴材質隔離膜高溫熱收縮所導致熱關閉機制失效的隱憂,
進而有更好的電化學表現;另外,旋轉塗佈技術能創造本研究獨創之
無增厚塗層、絕佳的均勻性,以及最小化塗佈層造成薄膜物理性質改
變。本研究第一部份提出的複合膜擁有極佳的電解質潤濕性(1300%)、
離子導電度(1.3mS/cm)、孔洞性(80%)等物理性質,在150°C 高溫測
試下毫無形變,且展現出良好的熱關閉功能,在130°C 下之薄膜阻抗
為常溫下的5000 倍以上。同時在鈕扣式全電池表現上(正極: 磷酸鋰
鐵 ; 負極: 界相碳微球 ; 1C= 138 mA/g),擁有優於商用隔離膜的第
一圈充放電平台、極佳的高電流密度表現(1C 之放電量維持率>80%)
以及不亞於商用膜之循環穩定性,並且隔離膜在循環放電後其表面仍
維持原貌,俱備在電池環境中的穩定性與堅韌性。唯獨此複合膜之機
械強度較差,因而本研究第二部份著重於薄膜機械強度改善,方法包
含聚醯亞胺反應前驅物之共聚合(Co-polymerization)以及奈米級二氧
化矽之添加;我們測試不同共聚合比例找出擁有最佳機械強度之共聚
合參數,並進一步添加奈米級二氧化矽,成功使薄膜之機械強度較原
先增加2-3 倍之多;隨後我們將機械強度改善的薄膜系列共四個組合
進行旋轉塗佈低密度聚乙烯,並進行物理性質與電化學性質之測試,
發現新的複合膜仍具備類似於原複合膜之性質表現,均遠優於商用隔
離膜。綜合以上,我們認為本研究製備之複合膜俱備取代傳統商用隔
離膜之潛力,能幫助隔離膜應用於對於電池安全性有更高要求的使用
情境,如電動車或儲能系統等。
This research focuses on the development and improvement of lithiumion secondary battery separator, and proposes a brand-new composite membrane with electrospun polyimide(PI) film as supportive layer and spin-coated low-density polyethylene(LDPE) as functional coating layer. This composite separator possesses the high thermal stability, electrolyte wettability, ionic conductivity and porosity from electrospun polyimide
film, and also the shutdown function from LDPE. The combined
advantages tackle thermal shrinkage issues with traditional polyolefin separator, thus enhance battery safety ; while the increase in wettability and porosity improves electrochemical performance of batteries. What’s more, the spin-coating technique makes unique none thickness-growth feature, uniform coating layer and minimize the changes in physical properties, hence mitigates the effect of coating layer on wettability, ionic conductivity
and porosity of separator. The proposed composite separator in the first part of this thesis shows some excellent physical properties like electrolyte wettability(1300%) 、conductivity(1.3 mS/cm) 、 porosity(80%) and thermal stability(no shrinkage at 150°C). Meanwhile, on the coin cell performance (Cathode: LiFePO4, anode: mesocarbon Microbeads(MCMB), 1C= 138 mA/g), the composite membrane shows a better first charge-discharge plateau, much better high current density performance (Capacity retention at 1C > 80%), and comparable cyclic performance in comparison with the commercial separator. Besides, there’s no obvious morphology change of composite separator after the repeated-cycling tests, proving its
stability and robustness in the operating environment. However, the composite separator in the first part of this thesis shows relatively weak tensile strength, hence in second part of the thesis, the tensile strength improvement of the separator is conducted by both co-polymerization of polyimide reactants and addition of nano-silica powder into the formula. The tensile strength of separator has been enhanced by 2-3 times through
these method;Afterward, the LDPE-spin-coated mechanically enhanced
PI series with LDPE show similar physical and electrochemical properties with the previous one regarding, and are all superior to the commercial separator. Therefore, the proposed composite separators have potential for next-generation high-safety lithium-ion secondary battery separator.
摘要 I
Abstract III
誌謝 V
目錄 VII
圖目錄 IX
表目錄 XVI
一、緒論及文獻回顧 1
1.1 電化學原理與鋰離子二次電池 1
1.1.1電化學反應系統 1
1.1.2影響電化學反應系統之變數 4
1.1.3 鋰離子二次電池 5
1.2隔離膜 11
1.2.1隔離膜簡介 11
1.2.2隔離膜的重要參數 11
1.2.3隔離膜種類 14
1.2.4傳統商用隔離膜的困境 18
1.3靜電紡絲 20
1.3.1靜電紡絲之基本原理 20
1.3.2影響靜電紡絲之參數 22
1.3.3聚酰亞胺(PI)靜電紡絲 28
1.4以靜電紡絲製備二次鋰電池隔離膜之文獻回顧 32
1.4.1單層靜電紡絲膜作為鋰電池隔離膜 32
1.4.2靜電紡絲隔離膜結合其他材料之複合隔離膜 33
1.4.3聚醯亞胺纖維薄膜之機械強度改善 37
1.4.4本研究之動機與實驗構想 39
二、實驗內容與鑑定方法 42
2.1實驗藥品 42
2.2實驗儀器及設備 45
2.2.1實驗儀器與設備列表 45
2.2.2實驗儀器與設備原理 48
2.3實驗步驟 56
2.3.1聚酰亞胺(Polyimide)靜電紡絲奈米纖維膜製備 56
2.3.2以低密度聚乙烯(LDPE)塗佈於PI膜方式製備功能性複合膜及性質優化探討 56
2.3.3 以共聚合(Co-polymerization)及添加二氧化矽等方式改善聚醯亞胺隔離膜之機械強度 57
2.3.4鈕扣式全電池組裝 57
2.3.5薄膜性質鑑定 58
三、聚乙烯塗佈靜電紡絲聚酰亞胺複合膜應用於鋰離子二次電池隔離膜之探討 62
3.1靜電紡絲聚酰亞胺膜之合成與性質鑑定 62
3.2旋轉塗佈低密度聚乙烯之靜電紡絲聚酰亞胺複合膜之優化與鑑定 66
3.3全電池測試 75
3.4 小結 79
四、以共聚合(Co-polymerization)及添加二氧化矽等方式改善聚醯亞胺隔離膜之機械強度暨其應用於鋰離子二次電池之探討 80
4.1以共聚合(Co-polymerization)及添加二氧化矽等方式改善聚醯亞胺隔離膜之機械強度 80
4.2機械強度最佳化之複合膜之薄膜性質分析 86
4.3全電池測試 95
4.4小結 99
五、未來工作 101
六、參考資料 103
[1]胡啟章, 電化學原理與方法(二版). (台北, 五南圖書出版股份有限公司, 2011).
[2]A.J.B..L.R.Faulkner, John Wiley & Sonic. (2011).
[3]陳奕勳, 中正大學化學工程學系碩士學位論文. (2003).
[4]J. Reynders, I. J., S. Reynders, Dielectrics and Electrical Insulation, IEEE Transactions. 6 (1999). 620-631
[5] Yemeserach Mekonnen, A. S., Arif I. Sarwat , in SoutheastCon 2016, IEEE: Norfolk, VA, USA.
[6]Fergus, J. W., Journal of Power Sources. 195 (2010). 939-954
[7]Kamali, A. and D. J. Fray, Review on Carbon and Silicon Based Materials as Anode Materials for Lithium Ion Batteries. Vol. 13. 2010).
[8]Kamali-Heidari, E., A. Kamyabi-Gol, M. Heydarzadeh sohi, and A. Ataie, Journal of Ultrafine Grained and Nanostructured Materials. 51 (2018). 1-12
[9]Harris, P. J. F., Interdisciplinary Science Reviews. 26 (2001). 204-210
[10]Richard S. Baldwin, W. R. B., Eunice K. Wong, MaryBeth R. Lewton, Megan K. Harris, NASA /TM-2010-216099. (2010).
[11]Arora, P. and Z. Zhang, Chemical Reviews. 104 (2004). 4419-4462
[12]Zhang, S. S., Journal of Power Sources. 164 (2007). 351-364
[13]Liu, K., Y. Liu, D. Lin, A. Pei, and Y. Cui, Science Advances. 4 (2018).
[14]Uchida, I., H. Ishikawa, M. Mohamedi, and M. Umeda, Journal of Power Sources. 119-121 (2003). 821-825
[15]Wu, M.-S., P.-C. J. Chiang, J.-C. Lin, and Y.-S. Jan, Electrochimica Acta. 49 (2004). 1803-1812
[16]Orendorff, C. J., Electrochem. Soc. Interface. 21 (2012). 61-65
[17]Lee, Y. M., J.-W. Kim, N.-S. Choi, J. A. Lee, W.-H. Seol, and J.-K. Park, Journal of Power Sources. 139 (2005). 235-241
[18]Shi, X., W. Zhou, D. Ma, Q. Ma, D. Bridges, Y. Ma, and A. Hu, Journal of Nanomaterials. 2015 (2015). 20
[19]Doshi, J. and D. H. Reneker, Journal of Electrostatics. 35 (1995). 151-160
[20]Bhardwaj, N. and S. C. Kundu, Biotechnology Advances. 28 (2010). 325-347
[21]Khan, W., M. Ceylan, L. Saeednia, A. Jabbarnia, and R. Asmatulu, Chemical and thermal investigations of electrospun polyacrylonitrile nanofibers incorporated with various nanoscale inclusions. Vol. 3. 2017.
[22]Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 313 (1969). 453
[23]Shin, Y. M., M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Polymer. 42 (2001). 09955-09967
[24]Reneker, D. H., A. L. Yarin, H. Fong, and S. Koombhongse, Journal of Applied Physics. 87 (2000). 4531-4547
[25]Kumbar, S. G., R. James, S. P. Nukavarapu, and C. T. Laurencin, Biomedical Materials. 3 (2008). 034002
[26]Yoo, J. J., K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. Mohana Reddy, J. Yu, R. Vajtai, and P. M. Ajayan, Nano Letters. 11 (2011). 1423-1427
[27]Jiang, H., D. Fang, B. S. Hsiao, B. Chu, and W. Chen, Biomacromolecules. 5 (2004). 326-333
[28]Fong, H., I. Chun, and D. H. Reneker, Polymer. 40 (1999). 4585-4592
[29]Mi-Ra Kim, S.-H. P., Ji-Un Kim and Jin-Kook Lee, Dye-Sensitized Solar Cells Based on Polymer Electrolytes, in Solar cells : dye-sensitized devices. 2011.
[30]Ramakrishna, S., K. Fujihara, W.-E. Teo, T.-C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers. WORLD SCIENTIFIC, 2005).
[31]Yuan, X., Y. Zhang, C. Dong, and J. Sheng, Polymer International. 53 (2004). 1704-1710
[32]Ding, Y., H. Hou, Y. Zhao, Z. Zhu, and H. Fong, Progress in Polymer Science. 61 (2016). 67-103
[33]Bell, V. L., Journal of Polymer Science: Polymer Chemistry Edition. 14 (1976). 225-235
[34]Harris, F. W., Synthesis of aromatic polyimides from dianhydrides and diamines, in Polyimides, D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother, Editors. 1990, Springer Netherlands: Dordrecht. p. 1-37.
[35]Solomin, V. A., Kardash, I.E., Snagovskii, Y.S., Messerle, P.E., Zhubanov, B.A. and Pravendnikov, Dokl. Akad. Nauk USSR, English transl. 236 (1977). 510
[36]Chen, S., D. Han, and H. Hou, Polymers for Advanced Technologies. 22 (2011). 295-303
[37]Liaw, D.-J., K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, and C.-S. Ha, Progress in Polymer Science. 37 (2012). 907-974
[38]Yang, K. S., D. D. Edie, D. Y. Lim, Y. M. Kim, and Y. O. Choi, Carbon. 41 (2003). 2039-2046
[39]Huang, C., S. Wang, H. Zhang, T. Li, S. Chen, C. Lai, and H. Hou, European Polymer Journal. 42 (2006). 1099-1104
[40]Cheng, C., J. Chen, F. Chen, P. Hu, X.-F. Wu, D. H. Reneker, and H. Hou, Journal of Applied Polymer Science. 116 (2010). 1581-1586
[41]Huang, C., S. Chen, D. H. Reneker, C. Lai, and H. Hou, Advanced Materials. 18 (2006). 668-671
[42]Xu, W., Y. Ding, S. Jiang, W. Ye, X. Liao, and H. Hou, Polymer Composites. 37 (2014). 794-801
[43]Wu, G. G. a. J., Novel Polyimide Materials Produced by Electrospinning, in high-performance-polymers-polyimides-based-from-chemistry-to-applications, M. J. M. Abadie, Editor. 2012, IntechOpen: London, UK.
[44]Fukushima, S., Y. Karube, and H. Kawakami, Polymer Journal. 42 (2010). 514
[45]Zhang, H., M.-Y. Zhou, C.-E. Lin, and B.-K. Zhu, RSC Advances. 5 (2015). 89848-89860
[46]Lingyi Kong, Y. Y., Zhiming Qiu, Zhiqiang Zhou, Jiqing Hu, Journal of Membrane Science. 549 (2018). 321-331
[47]Lushi Kong, B. L., Jinglan Ding, Xiaona Yan, Guofeng Tian, Shengli Qi,Dezhen Wu, Journal of Membrane Science. (2018). 244-250
[48]Christopher J. Orendorff , T. N. L., Carlos A. Chavez , Marlene Bencomo ,and Kyle R. Fenton, Adv. Energy Mater. 3 (2013). 314-320
[49]Choi, S.-S., Y. S. Lee, C. W. Joo, S. G. Lee, J. K. Park, and K.-S. Han, Electrochimica Acta. 50 (2004). 339-343
[50]Cho, T. H., T. Sakai, S. Tanase, K. Kimura, Y. Kondo, T. Tarao, and M. Tanaka, Electrochemical and Solid-State Letters. 10 (2007). A159-A162
[51]Miao, Y.-E., G.-N. Zhu, H. Hou, Y.-Y. Xia, and T. Liu, Journal of Power Sources. 226 (2013). 82-86
[52]Liyun Cao, P. A., Zhanwei Xu, Jianfeng Huang, Journal of Electroanalytical Chemistry. 767 (2016). 34-39
[53]Zhang, F., X. Ma, C. Cao, J. Li, and Y. Zhu, Journal of Power Sources. 251 (2014). 423-431
[54]Lee, J., C.-L. Lee, K. Park, and I.-D. Kim, Journal of Power Sources. 248 (2014). 1211-1217
[55]Ding, Y., P. Zhang, Z. Long, Y. Jiang, F. Xu, and W. Di, Science and technology of advanced materials. 9 (2008). 015005
[56]Kim, Y., W.-Y. Lee, K. J. Kim, J.-S. Yu, and Y.-J. Kim, Journal of Power Sources. 305 (2016). 225-232
[57]Cai, H., X. Tong, K. Chen, Y. Shen, J. Wu, Y. Xiang, Z. Wang, and J. Li, Polymers. 10 (2018).
[58]Chen, S., P. Hu, A. Greiner, C. Cheng, H. Cheng, F. Chen, and H. Hou, Nanotechnology. 19 (2008). 015604
[59]He, Y., D. Han, J. Chen, Y. Ding, S. Jiang, C. Hu, S. Chen, and H. Hou, RSC Advances. 4 (2014). 59936-59942
[60]Shayapat, J., O. H. Chung, and J. S. Park, Electrochimica Acta. 170 (2015). 110-121
[61]Yanilmaz, M., M. Dirican, and X. Zhang, Electrochimica Acta. 133 (2014). 501-508
[62]Zhai, Y., K. Xiao, J. Yu, and B. Ding, Electrochimica Acta. 154 (2015). 219-226
[63]Mennig, M. A. A. a. M., SOL-GEL TECHNOLOGIES FOR GLASS PRODUCERS AND USERS. (New York, Springer US, 2004). p. 37-48.
[64]Sahu, N., B. Parija, and S. Panigrahi, Indian Journal of Physics. 83 (2009). 493-502
[65]Wu, T.-H., Y.-H. Chu, C.-C. Hu, and L. J. Hardwick, Electrochemistry Communications. 27 (2013). 81-84
[66]Maeda, T., K. Takaesu, and A. Hotta, Journal of Applied Polymer Science. 133 (2015).
[67]Cheng, S., D. Shen, X. Zhu, X. Tian, D. Zhou, and L.-J. Fan, European Polymer Journal. 45 (2009). 2767-2778
[68]Xu, W., J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Energy & Environmental Science. 7 (2014). 513-537
[69]Lin, D., Y. Liu, and Y. Cui, Nature Nanotechnology. 12 (2017). 194
[70]Wang, L., Z. Zhou, X. Yan, F. Hou, L. Wen, W. Luo, J. Liang, and S. X. Dou, Energy Storage Materials. 14 (2018). 22-48
[71]Zhou, W., S. Upreti, and M. S. Whittingham, Electrochemistry Communications. 13 (2011). 158-161
[72]Choudhury, S., C. T.-C. Wan, W. I. Al Sadat, Z. Tu, S. Lau, M. J. Zachman, L. F. Kourkoutis, and L. A. Archer, Science Advances. 3 (2017). e1602809
[73]Li, W., W. Tang, J. Ji, X. Xia, X. Rui, X. Chen, M. Jiang, J. Zhou, and M. Dong, Carbohydrate Research. 411 (2015). 6-14
[74]Assegie, A. A., J.-H. Cheng, L.-M. Kuo, W.-N. Su, and B.-J. Hwang, Nanoscale. 10 (2018). 6125-6138
[75]Liu, H., H. Zhou, B.-S. Lee, X. Xing, M. Gonzalez, and P. Liu, ACS Applied Materials & Interfaces. 9 (2017). 30635-30642
[76]Chai, J., Z. Liu, J. Ma, J. Wang, X. Liu, H. Liu, J. Zhang, G. Cui, and L. Chen, Advanced Science. 4 (2017). 1600377
[77]Lu, Q., Y.-B. He, Q. Yu, B. Li, Y. V. Kaneti, Y. Yao, F. Kang, and Q.-H. Yang, Advanced Materials. 29 (2017). 1604460
[78]Cheng, X.-B., R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, and Q. Zhang, Adv Sci (Weinh). 3 (2015). 1500213-1500213
[79]Xu, K., Chemical Reviews. 114 (2014). 11503-11618

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *