帳號:guest(18.117.183.240)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):譚詠霖
作者(外文):Tan, Yung-Lin
論文名稱(中文):熱塑性彈性體於塊材及粉體態之結晶行為研究
論文名稱(外文):Crystallization Behavior of Thermoplastic Elastomers in Bulk and Powder State
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin-Lung
口試委員(中文):劉英麟
陳姵吟
口試委員(外文):Liu, Ying-Ling
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032520
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:71
中文關鍵詞:熱塑性彈性體熱塑性聚酯彈性體記憶效應結晶動力學3D列印
外文關鍵詞:thermoplastic elastomer (TPE)thermoplastic polyester elastomer (TPEE)memory effectcrystallization kinetics3D printing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:364
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
熱塑性聚酯彈性體(TPEE)具備橡膠的柔軟性與彈性,以及熱塑性高分子的可塑性和耐熱性,這些優異的特性使此材料得以應用於眾多領域。由於熱塑性彈性體的性質可以藉由硬軟段的比例進行調整,多元的材料特性使它被引入3D列印加工。選擇性雷射燒結(SLS)是3D列印常見的製程之一,欲進行選擇性雷射燒結的材料需要事先磨成粉末才得以進行加工。然而,DSC的實驗數據顯示TPEE在磨成粉末後會出現結晶行為改變的情況,而此結晶速率提升的現象無法藉由熱處理消除。材料的結晶速率提升會對SLS加工造成負面影響。因此,了解TPEE粉末樣品結晶速率提升的機制和成因是重要的課題。
基於本研究之分析結果,我們發現造成粉末樣品的結晶溫率與結晶速率提升的主因是源自材料對於加工狀態的記憶(memory)效應。冷凍研磨的過程中,材料會被施予高強度的剪切作用力,造成TPEE分子鏈形構產生局部有序區域。由於TPEE在熔融態時仍然有微相分離的情況,PBT硬段之間的極性作用力使有序結構即使在高於熔點的溫度也能被保留。因此,在降溫過程中此有序結構會降低盛和自由能障,造成結晶速率提升。偏光顯微鏡觀察顯示,與原始酯粒樣品相比,粉末樣品確實呈現較高的成核密度。本研究證明TPEE的加工狀態會影響其結晶行為,此成果對於3D列印材料之設計有所助益。
Thermoplastic polyester elastomers (TPEEs) has recently attracted much attention for the increasing applications in various fields due to their excellent properties. In particularly, they have been introduced to three dimensional printing (3D printing) technique. The materials applied to the selective laser sintering (SLS) process, one of the 3D printing technique, requires the printing materials to be grinded into powder and the crystallization temperature of the polymer measured by differential scanning calorimetry (DSC) in the cooling process is a key processing parameter. However, DSC results reveal an obvious change in crystallization temperature of the TPEEs consisting of PBT hard segment and PTMEG soft segment after freeze-grinding. The anomalous increase in crystallization temperature may have negative influence on the SLS process; moreover, the changes cannot be eliminated by thermal treatment even at the temperatures much higher than the melting point. In this scenario, the cause for the enhanced crystallization kinetics by freeze-grinding is a significant issue and needs to be further investigated.
On the basis of the experimental results of the present study, the increase in crystallization rate of the powder samples is attributed to the memory of the mechanical processing conditions. That is, the mechanical shear stresses imposed by the freeze-grinding process induces local ordering of the chain conformation of TPEEs, and the local zones of orientation retain in the molten state due to the persistent microphase separation and the polar interactions between the PBT hard segments. Therefore, the persistent aggregates and pre-existing ordered structures accelerate the crystallization kinetics during cooling process. The enhancement of crystallization rate is found to arise from the stress-induced nucleation compared with the virgin pellet samples, they have an increase in overall crystallization rate owing to the enhanced nucleation process. We thus demonstrate that the processing condition has drastic effect on the crystallization behavior of TPEEs, and the underlying mechanism is important for the development of 3D printing crystallite polymers.
Abstract----I
摘要----III
Table of Contents----IV
List of Figures----VI
List of Tables----IX
Chapter 1 Introduction----1
1-1 The Properties of Thermoplastic Polyester Elastomer (TPEE)----1
1-2 The Morphology and Phase Structure of TPEEs----4
1-3 Three-Dimensional Printing (3D Printing) Techniques and Selective Laser Sintering (SLS) Process----8
1-4 Research Motivation and Objective----12
Chapter 2 Experimental Section----13
2-1 Materials----13
2-2 1H Nuclear Magnetic Resonance (1H NMR) Spectroscopy Measurement----13
2-3 Fourier Transform Infrared Spectroscopy (FTIR) Measurement----13
2-4 Differential Scanning Calorimetry (DSC) Measurement----14
2-5 Polarized Optical Microscopy (POM) Observation----14
2-6 Thermal Gravimetric Analysis (TGA)----14
2-7 X-ray Diffraction Measurement----15
2-8 Small Angle and Wide Angle X-ray Scattering (SAXS/WAXS) Measurement----15
Chapter 3 Results and Discussion----16
3-1 Chemical Structures of TPEEs----16
3-2 Particle Characteristic of TPEE Powder Samples----26
3-3 Thermal Stability of TPEEs----30
3-4 Comparison of Melting and Crystallization Behavior of TPEEs in Different Sample Forms----33
3-5 Crystal Structure of TPEEs----44
3-6 Spherulite Morphology and Nucleation Density of TPEEs----47
3-7 Verification of the Effect of Stress on the Crystallization Kinetics of TPEE by Exploiting Various Treatments----53
3-8 The Microphase Separation and the Pre-existing Structure in the Molten State of TPEEs----58
3-9 The Proposed Mechanism of Crystallization in TPEEs----62
Chapter 4 Conclusion----65
References----67

[1] Lu, X., & Isacsson, U. (2000). Modification of road bitumens with thermoplastic polymers. Polymer Testing, 20, 77-86.
[2] Spontak, R. J., & Patel, N. P. (2000). Thermoplastic elastomers: fundamentals and applications. Current Opinion in Colloid & Interface Science, 5(5), 333-340.
[3] Amin, S. & Amin, M. (2011). Thermoplastic elastomeric (TPE) materials and their use in outdoor electrical insulation. Reviews on Advanced Materials Science, 29, 15-30.
[4] Holden, G. (1987). Thermoplastic Elastomers. In M. Morton (Ed.), Rubber Technology (pp. 465-481).
[5] Bandara, U. (1983). The two-phase structure of segmented block copoly(ether ester). Colloid & Polymer Science, 261, 26-39.
[6] Coleman, D. (1954). Block copolymers: Copolymerization of ethylene terephthalate and polyoxyethylene glycols. Journal of Polymer Science, 14(73), 15.
[7] Charch, W.H. (1959). Elastomeric Condensation Block Copolymers. Textile Research Journal, 29, 536.
[8] Veenstra, H., et al (1998). Microphase separation and rheology of a semicrystalline poly(ether-ester) multiblock copolymer. Journal of Polymer Science, Part B: Polymer Physics, 36(11), 1795.
[9] Vallance, Μ.Α., & S.L. Cooper (1984). Microstructure in linear condensation block copolymers: A modeling approach. Macromolecules, 17(6), 1208.
[10] Roslaniec, Z. (2006). Polyester Thermoplastic Elastomers: Synthesis, Properties, and Some Applications. In Handbook of Condensation Thermoplastic Elastomers (pp. 75-116).
[11] Drobny, J. (2014). Handbook of Thermoplastic Elastomers: Second Edition.
[12] Nagai, Y. (1997). Analysis of weathering of thermoplastic polyester elastomers—I. Polyether-polyester elastomers. Polymer Degradation and Stability, 56(1), 115-121.
[13] Wegner, G., et al. (1978). Structure and properties of segmented polyether-esters. II. Crystallization behavior of polyether-esters with random distribution of hard segment length. Die Angewandte Makromolekulare Chemie, 74(1), 295.
[14] Zeilstra, J. J. (1986). Influencing the crystallization behavior of PET-based segmented copoly(ether ester). Journal of Applied Polymer Science, 31(7), 1977-1997.
[15] Roslaniec, Z., & Pietkiewicz, D. (2005). Synthesis and Characteristics of Polyester-Based Thermoplastic Elastomers: Chemical Aspects: Sections 1-5. In Handbook of Thermoplastic Polyesters (pp. 579-629).
[16] Radhakrishnan, S., Saini, D. R., & Kuber, M. V. (1991). Effect of Morphology on the dielectric properties of a segmented copolyester. European Polymer Journal, 27(3), 291-297.
[17] Hsu, J., & Choi, K. Y. (1987). Kinetics of transesterification of dimethyl terephthalate with poly(tetramethylene ether) glycol and 1,4-butanediol catalyzed by tetrabutyl titanate. Journal of Applied Polymer Science, 33(2), 329.
[18] Chang, S.J., Chang, E. C., & Tsai, H. B. (1995). Block copolyetherester. Part 3:Preparation of block copolyetheresters by a terephthalic acid process in the presence of salts. Polymer Engineering & Science, 35(2), 190.
[19] Cella, R. J. (1973). Morphology of segmented polyester thermoplastic elastomers. Journal of Polymer Science: Polymer Symposia, 42(2), 727-740.
[20] Fakirov, S., & T. Gogeva (1990). Poly(ether/ester)s based on poly(butylene terephthalate) and poly(ethylene glycol). 2. Effect of polyether segment length. Die Makromolekulare Chemie, 191(3), 615.
[21] Gabrielse, W (2001). Microstructure and Phase Behavior of Block Copoly(ether ester) Thermoplastic Elastomers. Macromolecules, 34, 1685-1693.
[22] Feldman, D. (1986). Developments in block copolymers-2., I. Goodman Ed., Elsevier Applied Science Publishers. Journal of Polymer Science Part C: Polymer Letters, 24(12), 664–664.
[23] Briber, R. M. (1985). Crystallization behavior of random block copolymers of poly(butylene terephthalate) and poly(tetramethylene ether glycol). POLYMER, 26, 8-16.
[24] Hashimoto, T. (1987). Time-dependent Ginzburg-Landau approach for microphase-separation kinetics of block polymers. Macromolecules, 20(2), 465-468.
[25] Russell, T. P., & Chin, I. (1994). On the microphase separation kinetics of symmetric diblock copolymers. Colloid and Polymer Science, 272(11), 1373-1379.
[26] Lohse, D. J. (1997). Microphase separation in block copolymers. Current Opinion in Colloid & Interface Science, 2(2), 171-176.
[27] Leibler, L. (1980). Theory of Microphase Separation in Block Copolymers. Macromolecules, 13(6), 1602-1617.
[28] Groot, R. D., & Madden, T. J. (1998). Dynamic simulation of diblock copolymer microphase separation. The Journal of Chemical Physics, 108, 8713.
[29] Mai, Y., & Eisenberg, A. (2012). Self-assembly of block copolymers. Chemical Society Reviews, 41, 5989-5985.
[30] Lee, H. S. (2001). Synchrotron SAXS study on the micro-phase separation kinetics of segmented block copolymer. Fibers and Polymers, 2(2), 98-107
[31] Baeza, G. P., Sharma, A., Louhichi, A., Imperiali, L., Appel, W. P. J., Fitié, C. F. C., Vlassopoulos, D. (2016). Multiscale organization of thermoplastic elastomers with varying content of hard segments. Self-Assembly, 107, 89-101.
[32] de Almeida, A., Nébouy, M., & Baeza, G. P. (2019). Bimodal Crystallization Kinetics of PBT/PTHF Segmented Block Copolymers: Impact of the Chain Rigidity. Macromolecules, 52(3), 1227-1240.
[33] Schmid, M., Amado, A., & Wegener, K. (2015). Polymer powders for selective laser sintering (SLS). AIP Conference Proceedings, 1664(1), 160009.
[34] Schmid, M., & Wegener, K. (2016). Thermal and molecular properties of polymer powders for Selective Laser Sintering (SLS). AIP Conference Proceedings, 1779(1), 100003.
[35] Higashiyama, A., Yamamoto, Y., Chûjô, R., & Wu, M. (1992). NMR Characterization of Segment Sequence in Polyester-Polyether Copolymers. Polymer Journal, 24, 1345.
[36] Min, B., & Bang, E. (1999). An NMR Study of the Effect of Polymerization Methods on Segmented Sequence Distributions of Poly(butylene terephthalate)/Poly(tetramethylene glycol) Block Copolymers. Polymer Journal, 31(1), 42-50.
[37] Bumchan, M., Seon-Ho, K., Hyun, N., & Soo-Han, K. (1999). An NMR study on sequence distributions of block copolymers of poly(butylene terephthalate) and poly(tetramethylene glycol). Polymer Bulletin, 42, 587–594.
[38] Michell, L. A., & Müller, A. J. (2016). Confined crystallization of polymeric materials. Progress in Polymer Science, 54-55, 183-213.
[39] Loo, Y. L., Register, R. A., & Ryan, A. J. (2002). Modes of Crystallization in Block Copolymer Microdomains:  Breakout, Templated, and Confined. Macromolecules, 35(6), 2365-2374.
[40] Yokouchi, M. (1976). Structures of Two Crystalline Forms of Poly(butylene terephthalate) and Reversible Transition between Them by Mechanical Deformation. Macromolecules, 9(2), 266.
[41] Khanna, Y. P., & Reimschuessel, A. C. (1988). Memory effects in polymers. I. Orientational memory in the molten state; its relationship to polymer structure and influence on recrystallization rate and morphology. Journal of Applied Polymer Science, 35(8), 2259-2268.
[42] Khanna, Y. P., Reimschuessel, A. C., Banerjie, A., & Altman, C. (1988). Memory effects in polymers. II. Processing history vs. crystallization rate of nylon 6—observation of phenomenon and product behavior. POLYMER ENGINEERING AND SCIENCE, 28(24), 1600-1606.
[43] Strobl, G. (2000). From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: A major route followed in polymer crystallization. The European Physical Journal E, 3(2), 165-183.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *