帳號:guest(18.116.40.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃聖博
作者(外文):Huang, Sheng-Bor
論文名稱(中文):雙層無機奈米線疊層結構做為可撓式高效能鉀離子電池之電極
論文名稱(外文):Bilayer Inorganic Nanowires as Flexible High-Performance Potassium-Ion Battery Electrodes
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing-Yu
口試委員(中文):周更生
曾院介
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032519
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:35
中文關鍵詞:可撓式鉀離子電池無機奈米線
外文關鍵詞:FlexiblePotassium-ion batteryInorganic nanowires
相關次數:
  • 推薦推薦:0
  • 點閱點閱:173
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來隨著可攜式和穿戴式的電子產品蓬勃發展,可撓式的高效能電池開發應運而生,而傳統鋰離子電池作為目前主要電源卻面臨幾個問題:(1)石墨作為其負極材料的比電容量(372 mA h g-1)已無法滿足高能量密度裝置的應用。(2)鋰金屬在地殼中的含量過於稀少且分布不均,造成鋰金屬的市場價格容易浮動。(3)傳統的漿料塗佈系統無法在連續彎曲凹折下保持原本形狀,容易產生短路影響使用者的安全。由於以上原因,許多研究團隊致力於開發新的可撓式儲能裝置,包括其他鹼金屬離子電池、超電容、燃料電池等等。在本研究中,我們利用二磷化銅和銅的雙層奈米線結構作為負極材料,而正極則是利用聚丙烯酸將3, 4, 9, 10-苝四羧酸二酐融入奈米碳管的導電網結構中,成功開發出可撓式的高效能鉀離子電池。
Recently, the portable and wearable electronic products are attracting great interest, leading to development of flexible high-performance battery. However, the traditional lithium-ion batteries, the main power of electronic products, face several problems as following: (1) As its anode material, the specific capacity of graphite is only 372 mA h g-1, it is no longer sufficient for high energy density devices. (2) The content of lithium metal within the earth’s crust is too rare and unevenly distributed, causing its market price floating easily. (3) The conventional slurry coating system can’t the original shape when bending continuously, causing a short circuit to affect the safety of the user. For these reasons, many researchers are working on new flexible energy storage devices, including other alkali metal ion batteries, supercapacitors, fuel cells, and more. In this study, we successfully developed a flexible high-performance potassium ion battery which is made up of a bilayer CuP2/Cu nanowires mesh structure as the negative electrode and PTCDA film as the positive electrode.
中文摘要 i
Abstract ii
Table of Contents iii
List of Figures iv
List of Tables vi
Chapter 1 Introduction 1
1.1 The development and challenge of lithium-ion battery 1
1.2 The application of flexible battery 4
1.3 The development of potassium-ion battery 5
Chapter 2 Experimental section 8
2.1 Materials 8
2.2 CuP2 nanowire synthesis 8
2.3 Copper nanowire synthesis 9
2.4 Preparation of the bilayer CuP2/Cu nanowire mesh anode electrode 10
2.5 Preparation of the weakly-oxidized carbon nanotubes 10
2.6 Preparation of the PTCDA film cathode electrode 10
2.7 Characterization 11
2.8 Potassium-Ion battery assembly and electrochemical characterization 11
2.9 Bending test for pouch type battery 12
Chapter 3 Result and discussion 13
3.1 Analysis of bilayer CuP2/Cu nanowire mesh electrode 13
3.2 Electrochemical performance of bilayer CuP2/Cu nanowire mesh electrode 15
3.3 Analysis and electrochemical performance of PTCDA film electrode 20
3.4 Full cell and bending test 23
Chapter 4 Conclusion 28
Reference 29

1. Armand, M.; Tarascon, J.-M. J. n., Building better batteries. 2008, 451 (7179), 652.
2. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific: 2011; pp 171-179.
3. Valøen, L. O.; Reimers, J. N. J. J. o. T. E. S., Transport properties of LiPF6-based Li-ion battery electrolytes. 2005, 152 (5), A882-A891.
4. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G. J. N. c., High rate and stable cycling of lithium metal anode. 2015, 6, 6362.
5. Ishikawa, M.; Sugimoto, T.; Kikuta, M.; Ishiko, E.; Kono, M. J. J. o. p. s., Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. 2006, 162 (1), 658-662.
6. Yoshio, M.; Wang, H.; Fukuda, K.; Hara, Y.; Adachi, Y. J. J. o. T. E. S., Effect of carbon coating on electrochemical performance of treated natural graphite as lithium‐ion battery anode material. 2000, 147 (4), 1245-1250.
7. Yoshio, M.; Wang, H.; Fukuda, K. J. A. C. I. E., Spherical Carbon‐Coated Natural Graphite as a Lithium‐Ion Battery‐Anode Material. 2003, 42 (35), 4203-4206.
8. Peled, E.; Menachem, C.; Bar‐Tow, D.; Melman, A. J. J. o. T. E. S., Improved Graphite Anode for Lithium‐Ion Batteries Chemically Bonded Solid Electrolyte Interface and Nanochannel Formation. 1996, 143 (1), L4-L7.
9. Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B. J. E.; Science, E., Development and challenges of LiFePO 4 cathode material for lithium-ion batteries. 2011, 4 (2), 269-284.
10. Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C. J. J. o. p. s., Review on recent progress of nanostructured anode materials for Li-ion batteries. 2014, 257, 421-443.
11. Persson, K.; Sethuraman, V. A.; Hardwick, L. J.; Hinuma, Y.; Meng, Y. S.; Van Der Ven, A.; Srinivasan, V.; Kostecki, R.; Ceder, G. J. T. j. o. p. c. l., Lithium diffusion in graphitic carbon. 2010, 1 (8), 1176-1180.
12. Zhang, W.-J. J. J. o. P. S., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. 2011, 196 (1), 13-24.
13. Chang, W.-C.; Tseng, K.-W.; Tuan, H.-Y. J. N. l., Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes. 2017, 17 (2), 1240-1247.
14. Ko, M.; Chae, S.; Ma, J.; Kim, N.; Lee, H.-W.; Cui, Y.; Cho, J. J. N. E., Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. 2016, 1 (9), 16113.
15. Park, C. M.; Sohn, H. J. J. A. m., Black phosphorus and its composite for lithium rechargeable batteries. 2007, 19 (18), 2465-2468.
16. Lu, Z.; Liu, N.; Lee, H.-W.; Zhao, J.; Li, W.; Li, Y.; Cui, Y. J. A. n., Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. 2015, 9 (3), 2540-2547.
17. Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J. H.; Pang, C.; Son, S.; Kim, J. H.; Jang, Y. H.; Kim, D. E. J. A. m., Conductive fiber‐based ultrasensitive textile pressure sensor for wearable electronics. 2015, 27 (15), 2433-2439.
18. Wang, X.; Lu, X.; Liu, B.; Chen, D.; Tong, Y.; Shen, G. J. A. m., Flexible energy‐storage devices: design consideration and recent progress. 2014, 26 (28), 4763-4782.
19. Zhu, G.; Yang, R.; Wang, S.; Wang, Z. L. J. N. l., Flexible high-output nanogenerator based on lateral ZnO nanowire array. 2010, 10 (8), 3151-3155.
20. Liu, B.; Zhang, J.; Wang, X.; Chen, G.; Chen, D.; Zhou, C.; Shen, G. J. N. l., Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. 2012, 12 (6), 3005-3011.
21. Chen, Y.; Zhang, Y.; Geng, D.; Li, R.; Hong, H.; Chen, J.; Sun, X., One-pot synthesis of MnO2/graphene/carbon nanotube hybrid by chemical method. Carbon 2011, 49 (13), 4434-4442.
22. Liu, Y.; Zhang, A.; Shen, C.; Liu, Q.; Cao, X.; Ma, Y.; Chen, L.; Lau, C.; Chen, T. C.; Wei, F.; Zhou, C., Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries. ACS Nano 2017, 11 (6), 5530-5537.
23. Xiong, X.; Luo, W.; Hu, X.; Chen, C.; Qie, L.; Hou, D.; Huang, Y., Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci Rep 2015, 5, 9254.
24. Chen, Z.; To, J. W. F.; Wang, C.; Lu, Z.; Liu, N.; Chortos, A.; Pan, L.; Wei, F.; Cui, Y.; Bao, Z., A Three-Dimensionally Interconnected Carbon Nanotube-Conducting Polymer Hydrogel Network for High-Performance Flexible Battery Electrodes. Advanced Energy Materials 2014, 4 (12).
25. Cheng, Y.; Chen, G.; Wu, H.; Zhu, M.; Lu, Y. J. J. o. M. C. A., Use of regenerated cellulose to direct hetero-assembly of nanoparticles with carbon nanotubes for producing flexible battery anodes. 2017, 5 (27), 13944-13949.
26. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. J. C. r., Research development on sodium-ion batteries. 2014, 114 (23), 11636-11682.
27. Grosjean, C.; Miranda, P. H.; Perrin, M.; Poggi, P. J. R.; Reviews, S. E., Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. 2012, 16 (3), 1735-1744.
28. Zhang, W.; Mao, J.; Li, S.; Chen, Z.; Guo, Z., Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. J Am Chem Soc 2017, 139 (9), 3316-3319.
29. Chang, W. C.; Wu, J. H.; Chen, K. T.; Tuan, H. Y., Red Phosphorus Potassium-Ion Battery Anodes. Adv Sci (Weinh) 2019, 6 (9), 1801354.
30. Xiong, P.; Bai, P.; Tu, S.; Cheng, M.; Zhang, J.; Sun, J.; Xu, Y., Red Phosphorus Nanoparticle@3D Interconnected Carbon Nanosheet Framework Composite for Potassium-Ion Battery Anodes. Small 2018, e1802140.
31. Zhang, Q.; Mao, J.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y.; Liu, Y.; Guo, Z., Boosting the Potassium Storage Performance of Alloy-Based Anode Materials via Electrolyte Salt Chemistry. Advanced Energy Materials 2018, 8 (15).
32. Shkrob, I. A.; Marin, T. W.; Zhu, Y.; Abraham, D. P., Why Bis(fluorosulfonyl)imide Is a “Magic Anion” for Electrochemistry. The Journal of Physical Chemistry C 2014, 118 (34), 19661-19671.
33. Zhu, Y.-H.; Yang, X.; Bao, D.; Bie, X.-F.; Sun, T.; Wang, S.; Jiang, Y.-S.; Zhang, X.-B.; Yan, J.-M.; Jiang, Q., High-Energy-Density Flexible Potassium-Ion Battery Based on Patterned Electrodes. Joule 2018, 2 (4), 736-746.
34. Li, G. A.; Wang, C. Y.; Chang, W. C.; Tuan, H. Y., Phosphorus-Rich Copper Phosphide Nanowires for Field-Effect Transistors and Lithium-Ion Batteries. ACS Nano 2016, 10 (9), 8632-44.
35. Kang, C.; Yang, S.; Tan, M.; Wei, C.; Liu, Q.; Fang, J.; Liu, G., Purification of Copper Nanowires To Prepare Flexible Transparent Conductive Films with High Performance. ACS Applied Nano Materials 2018, 1 (7), 3155-3163.
36. Zhang, Y.; Guo, J.; Xu, D.; Sun, Y.; Yan, F., Synthesis of Ultralong Copper Nanowires for High-Performance Flexible Transparent Conductive Electrodes: The Effects of Polyhydric Alcohols. Langmuir 2018, 34 (13), 3884-3893.
37. Qian, F.; Lan, P. C.; Olson, T.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Han, T. Y., Multiphase separation of copper nanowires. Chem Commun (Camb) 2016, 52 (78), 11627-11630.
38. Fan, L.; Ma, R.; Wang, J.; Yang, H.; Lu, B., An Ultrafast and Highly Stable Potassium-Organic Battery. Adv Mater 2018, 30 (51), e1805486.
39. Duong, T.-H.; Kim, H.-C., Extremely Simple and Rapid Fabrication of Flexible Transparent Electrodes Using Ultralong Copper Nanowires. Industrial & Engineering Chemistry Research 2018, 57 (8), 3076-3082.
40. Chang, W.-C.; Kao, T.-L.; Lin, Y.; Tuan, H.-Y., A flexible all inorganic nanowire bilayer mesh as a high-performance lithium-ion battery anode. Journal of Materials Chemistry A 2017, 5 (43), 22662-22671.
41. Ma, G.; Huang, K.; Ma, J.-S.; Ju, Z.; Xing, Z.; Zhuang, Q.-c. J. J. o. M. C. A., Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. 2017, 5 (17), 7854-7861.
42. Wu, X.; Zhao, W.; Wang, H.; Qi, X.; Xing, Z.; Zhuang, Q.; Ju, Z. J. J. o. P. S., Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. 2018, 378, 460-467.
43. Zhang, W.; Wu, Z.; Zhang, J.; Liu, G.; Yang, N.-H.; Liu, R.-S.; Pang, W. K.; Li, W.; Guo, Z., Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries. Nano Energy 2018, 53, 967-974.
44. Liu, D.; Huang, X.; Qu, D.; Zheng, D.; Wang, G.; Harris, J.; Si, J.; Ding, T.; Chen, J.; Qu, D., Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy 2018, 52, 1-10.
45. Zhang, W.; Pang, W. K.; Sencadas, V.; Guo, Z. J. J., Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. 2018, 2 (8), 1534-1547.
46. Wu, Y.; Hu, S.; Xu, R.; Wang, J.; Peng, Z.; Zhang, Q.; Yu, Y., Boosting Potassium-Ion Battery Performance by Encapsulating Red Phosphorus in Free-Standing Nitrogen-Doped Porous Hollow Carbon Nanofibers. Nano Lett 2019, 19 (2), 1351-1358.
47. Li, D.; Zhang, Y.; Sun, Q.; Zhang, S.; Wang, Z.; Liang, Z.; Si, P.; Ci, L. J. E. S. M., Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. 2019.
48. Zhao, X.; Wang, W.; Hou, Z.; Wei, G.; Yu, Y.; Zhang, J.; Quan, Z. J. C. E. J., SnP0. 94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. 2019, 370, 677-683.
49. Qiu, W.; Xiao, H.; Li, Y.; Lu, X.; Tong, Y. J. S., Nitrogen and Phosphorus Codoped Vertical Graphene/Carbon Cloth as a Binder‐Free Anode for Flexible Advanced Potassium Ion Full Batteries. 2019, 15 (23), 1901285.
50. Manuel, J.; Zhao, X.; Cho, K.-K.; Kim, J.-K.; Ahn, J.-H., Ultralong Life Organic Sodium Ion Batteries Using a Polyimide/Multiwalled Carbon Nanotubes Nanocomposite and Gel Polymer Electrolyte. ACS Sustainable Chemistry & Engineering 2018, 6 (7), 8159-8166.
51. Yuan, C.; Wu, Q.; Shao, Q.; Li, Q.; Gao, B.; Duan, Q.; Wang, H. G., Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries. J Colloid Interface Sci 2018, 517, 72-79.
52. Cheng, Y.; Chen, Z.; Zhu, M.; Lu, Y., Polyacrylic Acid Assisted Assembly of Oxide Particles and Carbon Nanotubes for High-Performance Flexible Battery Anodes. Advanced Energy Materials 2015, 5 (6).
53. Kim, D.; Kwon, J.; Jung, J.; Kim, K.; Lee, H.; Yeo, J.; Hong, S.; Han, S.; Ko, S. H., A Transparent and Flexible Capacitive-Force Touch Pad from High-Aspect-Ratio Copper Nanowires with Enhanced Oxidation Resistance for Applications in Wearable Electronics. Small Methods 2018, 2 (7).
54. Wang, Y.; Liu, P.; Zeng, B.; Liu, L.; Yang, J., Facile Synthesis of Ultralong and Thin Copper Nanowires and Its Application to High-Performance Flexible Transparent Conductive Electrodes. Nanoscale Res Lett 2018, 13 (1), 78.

(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *