|
1. Armand, M.; Tarascon, J.-M. J. n., Building better batteries. 2008, 451 (7179), 652. 2. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific: 2011; pp 171-179. 3. Valøen, L. O.; Reimers, J. N. J. J. o. T. E. S., Transport properties of LiPF6-based Li-ion battery electrolytes. 2005, 152 (5), A882-A891. 4. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G. J. N. c., High rate and stable cycling of lithium metal anode. 2015, 6, 6362. 5. Ishikawa, M.; Sugimoto, T.; Kikuta, M.; Ishiko, E.; Kono, M. J. J. o. p. s., Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. 2006, 162 (1), 658-662. 6. Yoshio, M.; Wang, H.; Fukuda, K.; Hara, Y.; Adachi, Y. J. J. o. T. E. S., Effect of carbon coating on electrochemical performance of treated natural graphite as lithium‐ion battery anode material. 2000, 147 (4), 1245-1250. 7. Yoshio, M.; Wang, H.; Fukuda, K. J. A. C. I. E., Spherical Carbon‐Coated Natural Graphite as a Lithium‐Ion Battery‐Anode Material. 2003, 42 (35), 4203-4206. 8. Peled, E.; Menachem, C.; Bar‐Tow, D.; Melman, A. J. J. o. T. E. S., Improved Graphite Anode for Lithium‐Ion Batteries Chemically Bonded Solid Electrolyte Interface and Nanochannel Formation. 1996, 143 (1), L4-L7. 9. Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B. J. E.; Science, E., Development and challenges of LiFePO 4 cathode material for lithium-ion batteries. 2011, 4 (2), 269-284. 10. Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C. J. J. o. p. s., Review on recent progress of nanostructured anode materials for Li-ion batteries. 2014, 257, 421-443. 11. Persson, K.; Sethuraman, V. A.; Hardwick, L. J.; Hinuma, Y.; Meng, Y. S.; Van Der Ven, A.; Srinivasan, V.; Kostecki, R.; Ceder, G. J. T. j. o. p. c. l., Lithium diffusion in graphitic carbon. 2010, 1 (8), 1176-1180. 12. Zhang, W.-J. J. J. o. P. S., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. 2011, 196 (1), 13-24. 13. Chang, W.-C.; Tseng, K.-W.; Tuan, H.-Y. J. N. l., Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes. 2017, 17 (2), 1240-1247. 14. Ko, M.; Chae, S.; Ma, J.; Kim, N.; Lee, H.-W.; Cui, Y.; Cho, J. J. N. E., Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. 2016, 1 (9), 16113. 15. Park, C. M.; Sohn, H. J. J. A. m., Black phosphorus and its composite for lithium rechargeable batteries. 2007, 19 (18), 2465-2468. 16. Lu, Z.; Liu, N.; Lee, H.-W.; Zhao, J.; Li, W.; Li, Y.; Cui, Y. J. A. n., Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. 2015, 9 (3), 2540-2547. 17. Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J. H.; Pang, C.; Son, S.; Kim, J. H.; Jang, Y. H.; Kim, D. E. J. A. m., Conductive fiber‐based ultrasensitive textile pressure sensor for wearable electronics. 2015, 27 (15), 2433-2439. 18. Wang, X.; Lu, X.; Liu, B.; Chen, D.; Tong, Y.; Shen, G. J. A. m., Flexible energy‐storage devices: design consideration and recent progress. 2014, 26 (28), 4763-4782. 19. Zhu, G.; Yang, R.; Wang, S.; Wang, Z. L. J. N. l., Flexible high-output nanogenerator based on lateral ZnO nanowire array. 2010, 10 (8), 3151-3155. 20. Liu, B.; Zhang, J.; Wang, X.; Chen, G.; Chen, D.; Zhou, C.; Shen, G. J. N. l., Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. 2012, 12 (6), 3005-3011. 21. Chen, Y.; Zhang, Y.; Geng, D.; Li, R.; Hong, H.; Chen, J.; Sun, X., One-pot synthesis of MnO2/graphene/carbon nanotube hybrid by chemical method. Carbon 2011, 49 (13), 4434-4442. 22. Liu, Y.; Zhang, A.; Shen, C.; Liu, Q.; Cao, X.; Ma, Y.; Chen, L.; Lau, C.; Chen, T. C.; Wei, F.; Zhou, C., Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries. ACS Nano 2017, 11 (6), 5530-5537. 23. Xiong, X.; Luo, W.; Hu, X.; Chen, C.; Qie, L.; Hou, D.; Huang, Y., Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci Rep 2015, 5, 9254. 24. Chen, Z.; To, J. W. F.; Wang, C.; Lu, Z.; Liu, N.; Chortos, A.; Pan, L.; Wei, F.; Cui, Y.; Bao, Z., A Three-Dimensionally Interconnected Carbon Nanotube-Conducting Polymer Hydrogel Network for High-Performance Flexible Battery Electrodes. Advanced Energy Materials 2014, 4 (12). 25. Cheng, Y.; Chen, G.; Wu, H.; Zhu, M.; Lu, Y. J. J. o. M. C. A., Use of regenerated cellulose to direct hetero-assembly of nanoparticles with carbon nanotubes for producing flexible battery anodes. 2017, 5 (27), 13944-13949. 26. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. J. C. r., Research development on sodium-ion batteries. 2014, 114 (23), 11636-11682. 27. Grosjean, C.; Miranda, P. H.; Perrin, M.; Poggi, P. J. R.; Reviews, S. E., Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. 2012, 16 (3), 1735-1744. 28. Zhang, W.; Mao, J.; Li, S.; Chen, Z.; Guo, Z., Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. J Am Chem Soc 2017, 139 (9), 3316-3319. 29. Chang, W. C.; Wu, J. H.; Chen, K. T.; Tuan, H. Y., Red Phosphorus Potassium-Ion Battery Anodes. Adv Sci (Weinh) 2019, 6 (9), 1801354. 30. Xiong, P.; Bai, P.; Tu, S.; Cheng, M.; Zhang, J.; Sun, J.; Xu, Y., Red Phosphorus Nanoparticle@3D Interconnected Carbon Nanosheet Framework Composite for Potassium-Ion Battery Anodes. Small 2018, e1802140. 31. Zhang, Q.; Mao, J.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y.; Liu, Y.; Guo, Z., Boosting the Potassium Storage Performance of Alloy-Based Anode Materials via Electrolyte Salt Chemistry. Advanced Energy Materials 2018, 8 (15). 32. Shkrob, I. A.; Marin, T. W.; Zhu, Y.; Abraham, D. P., Why Bis(fluorosulfonyl)imide Is a “Magic Anion” for Electrochemistry. The Journal of Physical Chemistry C 2014, 118 (34), 19661-19671. 33. Zhu, Y.-H.; Yang, X.; Bao, D.; Bie, X.-F.; Sun, T.; Wang, S.; Jiang, Y.-S.; Zhang, X.-B.; Yan, J.-M.; Jiang, Q., High-Energy-Density Flexible Potassium-Ion Battery Based on Patterned Electrodes. Joule 2018, 2 (4), 736-746. 34. Li, G. A.; Wang, C. Y.; Chang, W. C.; Tuan, H. Y., Phosphorus-Rich Copper Phosphide Nanowires for Field-Effect Transistors and Lithium-Ion Batteries. ACS Nano 2016, 10 (9), 8632-44. 35. Kang, C.; Yang, S.; Tan, M.; Wei, C.; Liu, Q.; Fang, J.; Liu, G., Purification of Copper Nanowires To Prepare Flexible Transparent Conductive Films with High Performance. ACS Applied Nano Materials 2018, 1 (7), 3155-3163. 36. Zhang, Y.; Guo, J.; Xu, D.; Sun, Y.; Yan, F., Synthesis of Ultralong Copper Nanowires for High-Performance Flexible Transparent Conductive Electrodes: The Effects of Polyhydric Alcohols. Langmuir 2018, 34 (13), 3884-3893. 37. Qian, F.; Lan, P. C.; Olson, T.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Han, T. Y., Multiphase separation of copper nanowires. Chem Commun (Camb) 2016, 52 (78), 11627-11630. 38. Fan, L.; Ma, R.; Wang, J.; Yang, H.; Lu, B., An Ultrafast and Highly Stable Potassium-Organic Battery. Adv Mater 2018, 30 (51), e1805486. 39. Duong, T.-H.; Kim, H.-C., Extremely Simple and Rapid Fabrication of Flexible Transparent Electrodes Using Ultralong Copper Nanowires. Industrial & Engineering Chemistry Research 2018, 57 (8), 3076-3082. 40. Chang, W.-C.; Kao, T.-L.; Lin, Y.; Tuan, H.-Y., A flexible all inorganic nanowire bilayer mesh as a high-performance lithium-ion battery anode. Journal of Materials Chemistry A 2017, 5 (43), 22662-22671. 41. Ma, G.; Huang, K.; Ma, J.-S.; Ju, Z.; Xing, Z.; Zhuang, Q.-c. J. J. o. M. C. A., Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. 2017, 5 (17), 7854-7861. 42. Wu, X.; Zhao, W.; Wang, H.; Qi, X.; Xing, Z.; Zhuang, Q.; Ju, Z. J. J. o. P. S., Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. 2018, 378, 460-467. 43. Zhang, W.; Wu, Z.; Zhang, J.; Liu, G.; Yang, N.-H.; Liu, R.-S.; Pang, W. K.; Li, W.; Guo, Z., Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries. Nano Energy 2018, 53, 967-974. 44. Liu, D.; Huang, X.; Qu, D.; Zheng, D.; Wang, G.; Harris, J.; Si, J.; Ding, T.; Chen, J.; Qu, D., Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy 2018, 52, 1-10. 45. Zhang, W.; Pang, W. K.; Sencadas, V.; Guo, Z. J. J., Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. 2018, 2 (8), 1534-1547. 46. Wu, Y.; Hu, S.; Xu, R.; Wang, J.; Peng, Z.; Zhang, Q.; Yu, Y., Boosting Potassium-Ion Battery Performance by Encapsulating Red Phosphorus in Free-Standing Nitrogen-Doped Porous Hollow Carbon Nanofibers. Nano Lett 2019, 19 (2), 1351-1358. 47. Li, D.; Zhang, Y.; Sun, Q.; Zhang, S.; Wang, Z.; Liang, Z.; Si, P.; Ci, L. J. E. S. M., Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. 2019. 48. Zhao, X.; Wang, W.; Hou, Z.; Wei, G.; Yu, Y.; Zhang, J.; Quan, Z. J. C. E. J., SnP0. 94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. 2019, 370, 677-683. 49. Qiu, W.; Xiao, H.; Li, Y.; Lu, X.; Tong, Y. J. S., Nitrogen and Phosphorus Codoped Vertical Graphene/Carbon Cloth as a Binder‐Free Anode for Flexible Advanced Potassium Ion Full Batteries. 2019, 15 (23), 1901285. 50. Manuel, J.; Zhao, X.; Cho, K.-K.; Kim, J.-K.; Ahn, J.-H., Ultralong Life Organic Sodium Ion Batteries Using a Polyimide/Multiwalled Carbon Nanotubes Nanocomposite and Gel Polymer Electrolyte. ACS Sustainable Chemistry & Engineering 2018, 6 (7), 8159-8166. 51. Yuan, C.; Wu, Q.; Shao, Q.; Li, Q.; Gao, B.; Duan, Q.; Wang, H. G., Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries. J Colloid Interface Sci 2018, 517, 72-79. 52. Cheng, Y.; Chen, Z.; Zhu, M.; Lu, Y., Polyacrylic Acid Assisted Assembly of Oxide Particles and Carbon Nanotubes for High-Performance Flexible Battery Anodes. Advanced Energy Materials 2015, 5 (6). 53. Kim, D.; Kwon, J.; Jung, J.; Kim, K.; Lee, H.; Yeo, J.; Hong, S.; Han, S.; Ko, S. H., A Transparent and Flexible Capacitive-Force Touch Pad from High-Aspect-Ratio Copper Nanowires with Enhanced Oxidation Resistance for Applications in Wearable Electronics. Small Methods 2018, 2 (7). 54. Wang, Y.; Liu, P.; Zeng, B.; Liu, L.; Yang, J., Facile Synthesis of Ultralong and Thin Copper Nanowires and Its Application to High-Performance Flexible Transparent Conductive Electrodes. Nanoscale Res Lett 2018, 13 (1), 78.
|