|
1. Ning, X.; Ishida, H. Phenolic materials via ring‐opening polymerization of benzoxazines: Effect of molecular structure on mechanical and dynamic mechanical properties. Journal of Polymer Science Part B: Polymer Physics 1994, 32 (5), 921-927. 2. Ishida, H.; Sanders, D. P. Regioselectivity and network structure of difunctional alkyl-substituted aromatic amine-based polybenzoxazines. Macromolecules 2000, 33 (22), 8149-8157. 3. Ishida, H.; Lee, Y.-H. Synergism observed in polybenzoxazine and poly (ε-caprolactone) blends by dynamic mechanical and thermogravimetric analysis. Polymer 2001, 42 (16), 6971-6979. 4. Ghosh, N.; Kiskan, B.; Yagci, Y. Polybenzoxazines—new high performance thermosetting resins: synthesis and properties. Progress in polymer Science 2007, 32 (11), 1344-1391. 5. Yagci, Y.; Kiskan, B.; Ghosh, N. N. Recent advancement on polybenzoxazine—a newly developed high performance thermoset. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (21), 5565-5576. 6. Shen, S. B.; Ishida, H. Development and characterization of high‐performance polybenzoxazine composites. Polymer composites 1996, 17 (5), 710-719. 7. Kim, H. J.; Brunovska, Z.; Ishida, H. Dynamic mechanical analysis on highly thermally stable polybenzoxazines with an acetylene functional group. Journal of applied polymer science 1999, 73 (6), 857-862. 8. Zhang, K.; Liu, J.; Ohashi, S.; Liu, X.; Han, Z.; Ishida, H. Synthesis of high thermal stability polybenzoxazoles via ortho‐imide‐functional benzoxazine monomers. Journal of Polymer Science Part A: Polymer Chemistry 2015, 53 (11), 1330-1338. 9. Kim, H. J.; Brunovska, Z.; Ishida, H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers. Polymer 1999, 40 (23), 6565-6573. 10. Ishida, H.; Low, H. Y. A study on the volumetric expansion of benzoxazine-based phenolic resin. Macromolecules 1997, 30 (4), 1099-1106. 11. Liu, X.; Gu, Y. Study on the volumetric change during ring-opening polymerization of benzoxazines. Acta Polymerica Sinica 2000, 5. 12. Liu, X.; Gu, Y. Study on the volumetric expansion of benzoxazine curing with different catalysts. Journal of applied polymer science 2002, 84 (6), 1107-1113. 13. Ishida, H.; Allen, D. J. Physical and mechanical characterization of near‐zero shrinkage polybenzoxazines. Journal of polymer science Part B: Polymer physics 1996, 34 (6), 1019-1030. 14. Gandini, A.; Belgacem, M. N. Furans in polymer chemistry. Progress in Polymer Science 1997, 22 (6), 1203-1379. 15. Gandini, A.; Belgacem, M. N., Furan derivatives and furan chemistry at the service of macromolecular materials. In Monomers, polymers and composites from renewable resources, Elsevier: 2008; pp 115-152. 16. Holly, F. W.; Cope, A. C. Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine. Journal of the American Chemical Society 1944, 66 (11), 1875-1879. 17. Ning, X.; Ishida, H. Phenolic materials via ring‐opening polymerization: Synthesis and characterization of bisphenol‐A based benzoxazines and their polymers. Journal of Polymer Science Part A: Polymer Chemistry 1994, 32 (6), 1121-1129. 18. Ishida, H.; Rodriguez, Y. Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry. Polymer 1995, 36 (16), 3151-3158. 19. Ishida, H.; Agag, T., Handbook of benzoxazine resins. Elsevier: 2011. 20. Agag, T.; Takeichi, T. Novel benzoxazine monomers containing p-phenyl propargyl ether: polymerization of monomers and properties of polybenzoxazines. Macromolecules 2001, 34 (21), 7257-7263. 21. Kim, H. J.; Brunovska, Z.; Ishida, H. Molecular characterization of the polymerization of acetylene-functional benzoxazine resins. Polymer 1999, 40 (7), 1815-1822. 22. Ishida, H.; Ohba, S. Synthesis and characterization of maleimide and norbornene functionalized benzoxazines. Polymer 2005, 46 (15), 5588-5595. 23. Liu, Y. L.; Yu, J. M. Cocuring behaviors of benzoxazine and maleimide derivatives and the thermal properties of the cured products. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (6), 1890-1899. 24. Agag, T.; Takeichi, T. Preparation, characterization, and polymerization of maleimidobenzoxazine monomers as a novel class of thermosetting resins. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (4), 1424-1435. 25. Liu, Y. L.; Yu, J. M.; Chou, C. I. Preparation and properties of novel benzoxazine and polybenzoxazine with maleimide groups. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (23), 5954-5963. 26. Liu, Y. L.; Chou, C. I. High performance benzoxazine monomers and polymers containing furan groups. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43 (21), 5267-5282. 27. Su, Y.-C.; Chang, F.-C. Synthesis and characterization of fluorinated polybenzoxazine material with low dielectric constant. Polymer 2003, 44 (26), 7989-7996. 28. Su, Y. C.; Chen, W. C.; Chang, F. C. Investigation of the thermal properties of novel adamantane‐modified polybenzoxazine. Journal of applied polymer science 2004, 94 (3), 932-940. 29. Liu, Y.; Zheng, S. Inorganic–organic nanocomposites of polybenzoxazine with octa (propylglycidyl ether) polyhedral oligomeric silsesquioxane. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (3), 1168-1181. 30. Lee, Y.-J.; Kuo, S.-W.; Su, Y.-C.; Chen, J.-K.; Tu, C.-W.; Chang, F.-C. Syntheses, thermal properties, and phase morphologies of novel benzoxazines functionalized with polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer 2004, 45 (18), 6321-6331. 31. Espinosa, M.; Galia, M.; Cadiz, V. Novel phosphorilated flame retardant thermosets: epoxy–benzoxazine–novolac systems. Polymer 2004, 45 (18), 6103-6109. 32. Espinosa, M.; Cadiz, V.; Galia, M. Development of novel flame‐retardant thermosets based on benzoxazine–phenolic resins and a glycidyl phosphinate. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (2), 279-289. 33. Lin, C. H.; Cai, S. X.; Leu, T. S.; Hwang, T. Y.; Lee, H. H. Synthesis and properties of flame‐retardant benzoxazines by three approaches. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (11), 3454-3468. 34. Takeichi, T.; Agag, T.; Zeidam, R. Preparation and properties of polybenzoxazine/poly (imide‐siloxane) alloys: In situ ring‐opening polymerization of benzoxazine in the presence of soluble poly (imide‐siloxane) s. Journal of Polymer Science Part A: Polymer Chemistry 2001, 39 (15), 2633-2641. 35. Liu, Y. L.; Hsu, C. W.; Chou, C. I. Silicon‐containing benzoxazines and their polymers: Copolymerization and copolymer properties. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45 (6), 1007-1015. 36. Takeichi, T.; Kano, T.; Agag, T. Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets. Polymer 2005, 46 (26), 12172-12180. 37. Kiskan, B.; Gacal, B.; Tasdelen, M. A.; Colak, D.; Yagci, Y. In Design and synthesis of thermally curable polymers with benzoxazine functionalities, Macromolecular symposia, 2006; Wiley Online Library: 2006; pp 27-33. 38. Liu, Y. L.; Lin, G. C.; Wu, C. S. Facile approach to functionalizing polymers with specific chemical groups by an ozone treatment: Preparation of crosslinkable poly (vinylidene fluoride) possessing benzoxazine pendent groups. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45 (5), 949-954. 39. Gacal, B.; Cianga, L.; Agag, T.; Takeichi, T.; Yagci, Y. Synthesis and characterization of maleimide (Co) polymers with pendant benzoxazine groups by photoinduced radical polymerization and their thermal curing. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45 (13), 2774-2786. 40. Kiskan, B.; Yagci, Y.; Ishida, H. Synthesis, characterization, and properties of new thermally curable polyetheresters containing benzoxazine moieties in the main chain. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (2), 414-420. 41. Chou, C. I.; Liu, Y. L. High performance thermosets from a curable Diels–Alder polymer possessing benzoxazine groups in the main chain. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (19), 6509-6517. 42. Lin, C. H.; Chang, S. L.; Shen, T. Y.; Shih, Y. S.; Lin, H. T.; Wang, C. F. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies. Polymer Chemistry 2012, 3 (4), 935-945. 43. Liu, D. D.; Chen, E. Y.-X. Organocatalysis in biorefining for biomass conversion and upgrading. Green Chemistry 2014, 16 (3), 964-981. 44. Caes, B. R.; Teixeira, R. E.; Knapp, K. G.; Raines, R. T. Biomass to furanics: renewable routes to chemicals and fuels. ACS Sustainable Chemistry & Engineering 2015, 3 (11), 2591-2605. 45. Hu, F.; La Scala, J. J.; Sadler, J. M.; Palmese, G. R. Synthesis and characterization of thermosetting furan-based epoxy systems. Macromolecules 2014, 47 (10), 3332-3342. 46. Ünver, H.; Öktem, Z. Controlled cationic polymerization of furfuryl alcohol. European Polymer Journal 2013, 49 (5), 1023-1030. 47. Deka, H.; Mohanty, A.; Misra, M. Renewable-Resource-Based Green Blends from Poly(furfuryl alcohol) Bioresin and Lignin. Macromolecular Materials and Engineering 2014, 299 (5), 552-559 DOI: 10.1002/mame.201300221. 48. Monti, M.; Hoydonckx, H.; Stappers, F.; Camino, G. Thermal and combustion behavior of furan resin/silica nanocomposites. European Polymer Journal 2015, 67, 561-569 DOI: https://doi.org/10.1016/j.eurpolymj.2015.02.005. 49. Marefat Seyedlar, R.; Imani, M.; Mirabedini, S. M. Curing of polyfurfuryl alcohol resin catalyzed by a homologous series of dicarboxylic acid catalysts. II. Swelling behavior and thermal properties. Journal of Applied Polymer Science 2018, 135 (5), 45770 DOI: 10.1002/app.45770. 50. Guigo, N.; Mija, A.; Vincent, L.; Sbirrazzuoli, N. Eco-friendly composite resins based on renewable biomass resources: Polyfurfuryl alcohol/lignin thermosets. European Polymer Journal 2010, 46 (5), 1016-1023 DOI: https://doi.org/10.1016/j.eurpolymj.2010.02.010. 51. Fache, M.; Montérémal, C.; Boutevin, B.; Caillol, S. Amine hardeners and epoxy cross-linker from aromatic renewable resources. European Polymer Journal 2015, 73, 344-362 DOI: https://doi.org/10.1016/j.eurpolymj.2015.10.032. 52. Ménard, R.; Negrell, C.; Fache, M.; Ferry, L.; Sonnier, R.; David, G. From a bio-based phosphorus-containing epoxy monomer to fully bio-based flame-retardant thermosets. RSC Advances 2015, 5 (87), 70856-70867 DOI: 10.1039/C5RA12859E. 53. He, X.; Conner, A. H.; Koutsky, J. A. Evaluation of furfurylamines as curing agents for epoxy resins. Journal of Polymer Science Part A: Polymer Chemistry 1992, 30 (4), 533-542 DOI: 10.1002/pola.1992.080300403. 54. Cawse, J. L.; Stanford, J. L.; Still, R. H. Polymers from renewable sources, 1. Diamines and diisocyanates containing difurylalkane moieties. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 1984, 185 (4), 697-707. 55. Skouta, M.; Lesimple, A.; Bigot, Y. L.; Delmas, M. New method for the synthesis of difuranic diamines and tetrafuranic tetra-amines. Synthetic communications 1994, 24 (18), 2571-2576. 56. Bergman, S. D.; Wudl, F. Mendable polymers. Journal of Materials Chemistry 2008, 18 (1), 41-62. 57. Craven, J. M., Cross-linked thermally reversible polymers produced from condensation polymers with pendant furan groups cross-linked with maleimides. Google Patents: 1969. 58. Chujo, Y.; Sada, K.; Saegusa, T. Reversible gelation of polyoxazoline by means of Diels-Alder reaction. Macromolecules 1990, 23 (10), 2636-2641. 59. Laita, H.; Boufi, S.; Gandini, A. The application of the Diels-Alder reaction to polymers bearing furan moieties. 1. Reactions with maleimides. European Polymer Journal 1997, 33 (8), 1203-1211. 60. McElhanon, J. R.; Wheeler, D. R. Thermally responsive dendrons and dendrimers based on reversible furan-maleimide Diels− Alder adducts. Organic Letters 2001, 3 (17), 2681-2683. 61. Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295 (5560), 1698-1702. 62. Liu, Y. L.; Hsieh, C. Y. Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (2), 905-913. 63. Liu, Y. L.; Chen, Y. W. Thermally reversible cross‐linked polyamides with high toughness and self‐repairing ability from maleimide‐and furan‐functionalized aromatic polyamides. Macromolecular Chemistry and Physics 2007, 208 (2), 224-232. 64. Kötteritzsch, J.; Stumpf, S.; Hoeppener, S.; Vitz, J.; Hager, M. D.; Schubert, U. S. One‐Component Intrinsic Self‐Healing Coatings Based on Reversible Crosslinking by Diels–Alder Cycloadditions. Macromolecular Chemistry and Physics 2013, 214 (14), 1636-1649. 65. Imai, Y.; Itoh, H.; Naka, K.; Chujo, Y. Thermally reversible IPN organic− inorganic polymer hybrids utilizing the Diels− Alder reaction. Macromolecules 2000, 33 (12), 4343-4346. 66. Adachi, K.; Achimuthu, A. K.; Chujo, Y. Synthesis of organic− inorganic polymer hybrids controlled by Diels− Alder reaction. Macromolecules 2004, 37 (26), 9793-9797. 67. Liu, X.; Liu, H.; Zhou, W.; Zheng, H.; Yin, X.; Li, Y.; Guo, Y.; Zhu, M.; Ouyang, C.; Zhu, D. Thermoreversible covalent self-assembly of oligo (p-phenylenevinylene) bridged gold nanoparticles. Langmuir 2009, 26 (5), 3179-3185. 68. Woo, S. T.; Yun, T.; Kwak, S.-Y. Fouling-resistant microfiltration membrane modified with magnetite nanoparticles by reversible conjunction. Separation and Purification Technology 2018, 202, 299-306.
|