帳號:guest(18.226.170.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭雅文
作者(外文):Cheng, Ya-Wen
論文名稱(中文):帶有呋喃官能基之聚氧代氮代苯并環己烷之合成與性質研究
論文名稱(外文):Synthesis and Properties of Polybenzoxazine Possessing Furan Moieties
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying-Ling
口試委員(中文):蔡敬誠
鄭如忠
口試委員(外文):Tsai, Jing-Cherng
Jeng, Ru-Jong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032515
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:78
中文關鍵詞:聚氧代氮代苯并環己烷呋喃狄耳士–阿爾德反應
外文關鍵詞:PolybenzoxazineFuranDiels–Alder
相關次數:
  • 推薦推薦:0
  • 點閱點閱:769
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
聚氧代氮代苯并環己烷(polybenzoxazine 簡稱PBz)為一新型熱固性材料,可選用不同單體進行分子設計以改變材料之特性,本研究導入呋喃官能基,使其具有狄耳士–阿爾德反應(Diels–Alder reaction簡稱DA reaction)之反應性。
本研究首先合成帶有呋喃(furan)官能基之二胺單體,接著利用此單體二呋喃二胺與雙酚A (Bisphenol A)和三聚甲醛(Paraformaldehyde 簡稱PF) 透過曼尼希(Mannich)縮合反應合成出主鏈型聚氧代氮代苯并環己烷(polybenzoxazine 簡稱PBz)。並以紅外光譜儀(FTIR)以及核磁共振光譜儀(NMR)鑑定其化學結構,以及使用微差掃描卡計(DSC)和熱重損失分析儀(TGA)測定其熱性質,可於 240 ℃ 下進行熱交聯反應,交聯薄膜具有高熱裂解溫度(350 ℃)以及殘碳率(50 %),顯示出良好之熱穩定性。
接著將呋喃官能化之PBz與雙馬來醯胺(Bismaleimide簡稱BMI)透過狄耳士–阿爾德反應在60 ℃ 下進行高分子交聯,使材料可以在氮氧雜環開環前交聯,加工製備出薄膜。並以紅外光譜儀(FTIR)鑑定其交聯反應結構,以及使用微差掃描卡計(DSC)和熱重損失分析儀(TGA)測定其熱性質。
Polybenzoxazine(PBz), as a novel type of thermosets, exhibits extraordinarily rich molecular design flexibility which could be obtained from cheap raw materials. In this study, Furan groups have been incorporated to polybenzoxazines making the resulting furan-functionalized polybenzoxazines being capable of carring out the Diels–Alder (DA) reaction.
We first synthesized difuranic diamine and then introduced into the synthesis of furanic polybenzoxazine(PBz). The furan-containing main-chain type polybenzoxazine(PBz) precursors were successfully prepared through the Mannich-type polycondensation of bisphenol A, paraformaldehyde, and difuranic diamine. After that, we use FTIR and NMR to characterize the chemical structure of PBz which proves PBz has been successfully prepared. Then thermal analysis was carried out by differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA). The PBz polymer could be crosslinked under 240℃ and show good thermal stability.
Furan functionalized polybenzoxazine could react with bismaleimide (BMI) under 60℃ through Diels–Alder reaction before oxazine ring-opening polymerization and fabricate a freestanding membrane. The DA crosslinking structure was proved by FTIR. By the means of DSC and TGA, the thermal properties are also tested.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 聚氧代氮代苯并環己烷(polybenzoxazine) 1
1-2 呋喃(furan)與狄耳士–阿爾德反應(Diels–Alder) 3
1-3 研究方向 6
第二章 文獻回顧 7
2-1 聚氧代氮代苯并環己烷(polybenzoxazine) 7
2-1-1 PBz之合成及應用 7
2-1-2 PBz之分子設計 9
2-1-3 主鏈型PBz 15
2-2 呋喃官能基單體 21
2-2-1 呋喃有機單體 21
2-2-2 二呋喃二胺之合成 22
2-3反應性呋喃高分子之應用 25
2-3-1可回收熱固性高分子(Recycling Thermoset Polymers) 25
2-3-2自修復材料(Self-healing & mendable polymer) 28
2-3-3混成材料(Hybrids Materials) 32
第三章 實驗方法 36
3-1實驗藥品 36
3-2 實驗儀器 38
3-3實驗步驟 41
3-3-1二呋喃二胺(DFDA)之合成 41
3-3-2含有呋喃官能基的PBz-DFDA之合成 41
3-3-3含有呋喃官能基的PBz-DFDA/oda共聚合物之合成 42
3-3-4 PBz-DFDA開環聚合交聯膜的製備 42
3-3-5 PBz-DFDA進行Diels-Alder 反應測試 43
3-3-6 PBz-DFDA 狄耳士–阿爾德反應交聯膜的製備 43
第四章 結果與討論 44
4-1二呋喃二胺(DFDA)單體之鑑定 44
4-2含有呋喃官能基的PBz之性質討論 48
4-2-1 PBz-DFDA的性質分析 48
4-2-2 PBz-DFDA開環交聯膜的性質分析 53
4-2-3 含有呋喃官能基的PBz-DFDA/oda共聚合物之鑑定 55
4-2-4 PBz-DFDA/oda共聚合物開環交聯膜的性質分析 59
4-3 PBz-DFDA之DA反應與薄膜性質 63
4-3-1 PBz-DFDA之DA反應測試 63
4-3-2 DA交聯膜之性質討論 63
第五章 結論 69
第六章 參考文獻 70
附錄 77

1. Ning, X.; Ishida, H. Phenolic materials via ring‐opening polymerization of benzoxazines: Effect of molecular structure on mechanical and dynamic mechanical properties. Journal of Polymer Science Part B: Polymer Physics 1994, 32 (5), 921-927.
2. Ishida, H.; Sanders, D. P. Regioselectivity and network structure of difunctional alkyl-substituted aromatic amine-based polybenzoxazines. Macromolecules 2000, 33 (22), 8149-8157.
3. Ishida, H.; Lee, Y.-H. Synergism observed in polybenzoxazine and poly (ε-caprolactone) blends by dynamic mechanical and thermogravimetric analysis. Polymer 2001, 42 (16), 6971-6979.
4. Ghosh, N.; Kiskan, B.; Yagci, Y. Polybenzoxazines—new high performance thermosetting resins: synthesis and properties. Progress in polymer Science 2007, 32 (11), 1344-1391.
5. Yagci, Y.; Kiskan, B.; Ghosh, N. N. Recent advancement on polybenzoxazine—a newly developed high performance thermoset. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (21), 5565-5576.
6. Shen, S. B.; Ishida, H. Development and characterization of high‐performance polybenzoxazine composites. Polymer composites 1996, 17 (5), 710-719.
7. Kim, H. J.; Brunovska, Z.; Ishida, H. Dynamic mechanical analysis on highly thermally stable polybenzoxazines with an acetylene functional group. Journal of applied polymer science 1999, 73 (6), 857-862.
8. Zhang, K.; Liu, J.; Ohashi, S.; Liu, X.; Han, Z.; Ishida, H. Synthesis of high thermal stability polybenzoxazoles via ortho‐imide‐functional benzoxazine monomers. Journal of Polymer Science Part A: Polymer Chemistry 2015, 53 (11), 1330-1338.
9. Kim, H. J.; Brunovska, Z.; Ishida, H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers. Polymer 1999, 40 (23), 6565-6573.
10. Ishida, H.; Low, H. Y. A study on the volumetric expansion of benzoxazine-based phenolic resin. Macromolecules 1997, 30 (4), 1099-1106.
11. Liu, X.; Gu, Y. Study on the volumetric change during ring-opening polymerization of benzoxazines. Acta Polymerica Sinica 2000, 5.
12. Liu, X.; Gu, Y. Study on the volumetric expansion of benzoxazine curing with different catalysts. Journal of applied polymer science 2002, 84 (6), 1107-1113.
13. Ishida, H.; Allen, D. J. Physical and mechanical characterization of near‐zero shrinkage polybenzoxazines. Journal of polymer science Part B: Polymer physics 1996, 34 (6), 1019-1030.
14. Gandini, A.; Belgacem, M. N. Furans in polymer chemistry. Progress in Polymer Science 1997, 22 (6), 1203-1379.
15. Gandini, A.; Belgacem, M. N., Furan derivatives and furan chemistry at the service of macromolecular materials. In Monomers, polymers and composites from renewable resources, Elsevier: 2008; pp 115-152.
16. Holly, F. W.; Cope, A. C. Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine. Journal of the American Chemical Society 1944, 66 (11), 1875-1879.
17. Ning, X.; Ishida, H. Phenolic materials via ring‐opening polymerization: Synthesis and characterization of bisphenol‐A based benzoxazines and their polymers. Journal of Polymer Science Part A: Polymer Chemistry 1994, 32 (6), 1121-1129.
18. Ishida, H.; Rodriguez, Y. Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry. Polymer 1995, 36 (16), 3151-3158.
19. Ishida, H.; Agag, T., Handbook of benzoxazine resins. Elsevier: 2011.
20. Agag, T.; Takeichi, T. Novel benzoxazine monomers containing p-phenyl propargyl ether: polymerization of monomers and properties of polybenzoxazines. Macromolecules 2001, 34 (21), 7257-7263.
21. Kim, H. J.; Brunovska, Z.; Ishida, H. Molecular characterization of the polymerization of acetylene-functional benzoxazine resins. Polymer 1999, 40 (7), 1815-1822.
22. Ishida, H.; Ohba, S. Synthesis and characterization of maleimide and norbornene functionalized benzoxazines. Polymer 2005, 46 (15), 5588-5595.
23. Liu, Y. L.; Yu, J. M. Cocuring behaviors of benzoxazine and maleimide derivatives and the thermal properties of the cured products. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (6), 1890-1899.
24. Agag, T.; Takeichi, T. Preparation, characterization, and polymerization of maleimidobenzoxazine monomers as a novel class of thermosetting resins. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (4), 1424-1435.
25. Liu, Y. L.; Yu, J. M.; Chou, C. I. Preparation and properties of novel benzoxazine and polybenzoxazine with maleimide groups. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (23), 5954-5963.
26. Liu, Y. L.; Chou, C. I. High performance benzoxazine monomers and polymers containing furan groups. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43 (21), 5267-5282.
27. Su, Y.-C.; Chang, F.-C. Synthesis and characterization of fluorinated polybenzoxazine material with low dielectric constant. Polymer 2003, 44 (26), 7989-7996.
28. Su, Y. C.; Chen, W. C.; Chang, F. C. Investigation of the thermal properties of novel adamantane‐modified polybenzoxazine. Journal of applied polymer science 2004, 94 (3), 932-940.
29. Liu, Y.; Zheng, S. Inorganic–organic nanocomposites of polybenzoxazine with octa (propylglycidyl ether) polyhedral oligomeric silsesquioxane. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (3), 1168-1181.
30. Lee, Y.-J.; Kuo, S.-W.; Su, Y.-C.; Chen, J.-K.; Tu, C.-W.; Chang, F.-C. Syntheses, thermal properties, and phase morphologies of novel benzoxazines functionalized with polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer 2004, 45 (18), 6321-6331.
31. Espinosa, M.; Galia, M.; Cadiz, V. Novel phosphorilated flame retardant thermosets: epoxy–benzoxazine–novolac systems. Polymer 2004, 45 (18), 6103-6109.
32. Espinosa, M.; Cadiz, V.; Galia, M. Development of novel flame‐retardant thermosets based on benzoxazine–phenolic resins and a glycidyl phosphinate. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (2), 279-289.
33. Lin, C. H.; Cai, S. X.; Leu, T. S.; Hwang, T. Y.; Lee, H. H. Synthesis and properties of flame‐retardant benzoxazines by three approaches. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (11), 3454-3468.
34. Takeichi, T.; Agag, T.; Zeidam, R. Preparation and properties of polybenzoxazine/poly (imide‐siloxane) alloys: In situ ring‐opening polymerization of benzoxazine in the presence of soluble poly (imide‐siloxane) s. Journal of Polymer Science Part A: Polymer Chemistry 2001, 39 (15), 2633-2641.
35. Liu, Y. L.; Hsu, C. W.; Chou, C. I. Silicon‐containing benzoxazines and their polymers: Copolymerization and copolymer properties. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45 (6), 1007-1015.
36. Takeichi, T.; Kano, T.; Agag, T. Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets. Polymer 2005, 46 (26), 12172-12180.
37. Kiskan, B.; Gacal, B.; Tasdelen, M. A.; Colak, D.; Yagci, Y. In Design and synthesis of thermally curable polymers with benzoxazine functionalities, Macromolecular symposia, 2006; Wiley Online Library: 2006; pp 27-33.
38. Liu, Y. L.; Lin, G. C.; Wu, C. S. Facile approach to functionalizing polymers with specific chemical groups by an ozone treatment: Preparation of crosslinkable poly (vinylidene fluoride) possessing benzoxazine pendent groups. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45 (5), 949-954.
39. Gacal, B.; Cianga, L.; Agag, T.; Takeichi, T.; Yagci, Y. Synthesis and characterization of maleimide (Co) polymers with pendant benzoxazine groups by photoinduced radical polymerization and their thermal curing. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45 (13), 2774-2786.
40. Kiskan, B.; Yagci, Y.; Ishida, H. Synthesis, characterization, and properties of new thermally curable polyetheresters containing benzoxazine moieties in the main chain. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (2), 414-420.
41. Chou, C. I.; Liu, Y. L. High performance thermosets from a curable Diels–Alder polymer possessing benzoxazine groups in the main chain. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (19), 6509-6517.
42. Lin, C. H.; Chang, S. L.; Shen, T. Y.; Shih, Y. S.; Lin, H. T.; Wang, C. F. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies. Polymer Chemistry 2012, 3 (4), 935-945.
43. Liu, D. D.; Chen, E. Y.-X. Organocatalysis in biorefining for biomass conversion and upgrading. Green Chemistry 2014, 16 (3), 964-981.
44. Caes, B. R.; Teixeira, R. E.; Knapp, K. G.; Raines, R. T. Biomass to furanics: renewable routes to chemicals and fuels. ACS Sustainable Chemistry & Engineering 2015, 3 (11), 2591-2605.
45. Hu, F.; La Scala, J. J.; Sadler, J. M.; Palmese, G. R. Synthesis and characterization of thermosetting furan-based epoxy systems. Macromolecules 2014, 47 (10), 3332-3342.
46. Ünver, H.; Öktem, Z. Controlled cationic polymerization of furfuryl alcohol. European Polymer Journal 2013, 49 (5), 1023-1030.
47. Deka, H.; Mohanty, A.; Misra, M. Renewable-Resource-Based Green Blends from Poly(furfuryl alcohol) Bioresin and Lignin. Macromolecular Materials and Engineering 2014, 299 (5), 552-559 DOI: 10.1002/mame.201300221.
48. Monti, M.; Hoydonckx, H.; Stappers, F.; Camino, G. Thermal and combustion behavior of furan resin/silica nanocomposites. European Polymer Journal 2015, 67, 561-569 DOI: https://doi.org/10.1016/j.eurpolymj.2015.02.005.
49. Marefat Seyedlar, R.; Imani, M.; Mirabedini, S. M. Curing of polyfurfuryl alcohol resin catalyzed by a homologous series of dicarboxylic acid catalysts. II. Swelling behavior and thermal properties. Journal of Applied Polymer Science 2018, 135 (5), 45770 DOI: 10.1002/app.45770.
50. Guigo, N.; Mija, A.; Vincent, L.; Sbirrazzuoli, N. Eco-friendly composite resins based on renewable biomass resources: Polyfurfuryl alcohol/lignin thermosets. European Polymer Journal 2010, 46 (5), 1016-1023 DOI: https://doi.org/10.1016/j.eurpolymj.2010.02.010.
51. Fache, M.; Montérémal, C.; Boutevin, B.; Caillol, S. Amine hardeners and epoxy cross-linker from aromatic renewable resources. European Polymer Journal 2015, 73, 344-362 DOI: https://doi.org/10.1016/j.eurpolymj.2015.10.032.
52. Ménard, R.; Negrell, C.; Fache, M.; Ferry, L.; Sonnier, R.; David, G. From a bio-based phosphorus-containing epoxy monomer to fully bio-based flame-retardant thermosets. RSC Advances 2015, 5 (87), 70856-70867 DOI: 10.1039/C5RA12859E.
53. He, X.; Conner, A. H.; Koutsky, J. A. Evaluation of furfurylamines as curing agents for epoxy resins. Journal of Polymer Science Part A: Polymer Chemistry 1992, 30 (4), 533-542 DOI: 10.1002/pola.1992.080300403.
54. Cawse, J. L.; Stanford, J. L.; Still, R. H. Polymers from renewable sources, 1. Diamines and diisocyanates containing difurylalkane moieties. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 1984, 185 (4), 697-707.
55. Skouta, M.; Lesimple, A.; Bigot, Y. L.; Delmas, M. New method for the synthesis of difuranic diamines and tetrafuranic tetra-amines. Synthetic communications 1994, 24 (18), 2571-2576.
56. Bergman, S. D.; Wudl, F. Mendable polymers. Journal of Materials Chemistry 2008, 18 (1), 41-62.
57. Craven, J. M., Cross-linked thermally reversible polymers produced from condensation polymers with pendant furan groups cross-linked with maleimides. Google Patents: 1969.
58. Chujo, Y.; Sada, K.; Saegusa, T. Reversible gelation of polyoxazoline by means of Diels-Alder reaction. Macromolecules 1990, 23 (10), 2636-2641.
59. Laita, H.; Boufi, S.; Gandini, A. The application of the Diels-Alder reaction to polymers bearing furan moieties. 1. Reactions with maleimides. European Polymer Journal 1997, 33 (8), 1203-1211.
60. McElhanon, J. R.; Wheeler, D. R. Thermally responsive dendrons and dendrimers based on reversible furan-maleimide Diels− Alder adducts. Organic Letters 2001, 3 (17), 2681-2683.
61. Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295 (5560), 1698-1702.
62. Liu, Y. L.; Hsieh, C. Y. Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (2), 905-913.
63. Liu, Y. L.; Chen, Y. W. Thermally reversible cross‐linked polyamides with high toughness and self‐repairing ability from maleimide‐and furan‐functionalized aromatic polyamides. Macromolecular Chemistry and Physics 2007, 208 (2), 224-232.
64. Kötteritzsch, J.; Stumpf, S.; Hoeppener, S.; Vitz, J.; Hager, M. D.; Schubert, U. S. One‐Component Intrinsic Self‐Healing Coatings Based on Reversible Crosslinking by Diels–Alder Cycloadditions. Macromolecular Chemistry and Physics 2013, 214 (14), 1636-1649.
65. Imai, Y.; Itoh, H.; Naka, K.; Chujo, Y. Thermally reversible IPN organic− inorganic polymer hybrids utilizing the Diels− Alder reaction. Macromolecules 2000, 33 (12), 4343-4346.
66. Adachi, K.; Achimuthu, A. K.; Chujo, Y. Synthesis of organic− inorganic polymer hybrids controlled by Diels− Alder reaction. Macromolecules 2004, 37 (26), 9793-9797.
67. Liu, X.; Liu, H.; Zhou, W.; Zheng, H.; Yin, X.; Li, Y.; Guo, Y.; Zhu, M.; Ouyang, C.; Zhu, D. Thermoreversible covalent self-assembly of oligo (p-phenylenevinylene) bridged gold nanoparticles. Langmuir 2009, 26 (5), 3179-3185.
68. Woo, S. T.; Yun, T.; Kwak, S.-Y. Fouling-resistant microfiltration membrane modified with magnetite nanoparticles by reversible conjunction. Separation and Purification Technology 2018, 202, 299-306.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *