帳號:guest(3.144.42.128)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳冠宏
作者(外文):Chen, Kuan-Hung
論文名稱(中文):口服奈米載體投遞系統標靶治療胰臟癌
論文名稱(外文):Oral Nanocarrier Delivery Systems for Targeted Pancreatic Tumor Therapy
指導教授(中文):宋信文
指導教授(外文):Sung, Hsing-Wen
口試委員(中文):王麗芳
蘇慕寰
曾雲龍
甘霈
許源宏
梁祥發
呂瑞梅
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032513
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:86
中文關鍵詞:胰腺癌腫瘤纖維化基質吉西他濱紫杉醇泡騰反應阿黴素β-葡聚醣巨噬細胞載藥
外文關鍵詞:Pancreatic adenocarcinomaDesmoplastic stromaGemcitabinePaclitaxelEffervescenceDoxorubicinβ-GlucansMacrophage hitchhiking
相關次數:
  • 推薦推薦:0
  • 點閱點閱:484
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
胰腺導管癌(Pancreatic ductal adenocarcinoma,PDAC)是臨床上一種侵襲性高的惡性腫瘤,其起源於胰腺的胰導管上皮細胞。由於胰臟癌難以早期診斷,且現行療法不盡理想,截至目前胰臟癌患者的平均五年存活率仍低於10%;胰臟癌腫瘤微環境(Tumor microenvironment,TME)中過度沉積的纖維化增生基質是造成此不良預後的主要原因之一。目前大多數化療藥物是通過靜脈注射(Intravenous injection)方式給藥,這不僅會給患者帶來不適,同時也造成患者無法在家自行用藥。因此,為了優化胰臟癌治療方式,本研究開發了兩種口服奈米載體投遞系統。第一個投遞系統是一口服膠囊,可同時遞送親水性藥物吉西他濱(Gemcitabine,GEM)和疏水性藥物紫杉醇(Paclitaxel,PTX);吉西他濱與紫杉醇已被核准用於治療晚期胰臟癌。當此口服膠囊抵達小腸環境,膠囊會溶解並自發地產生二氧化碳氣泡。這些氣泡載體的破裂會產生含紫杉醇的奈米乳化液,並將吉西他濱良好分散於水相中;紫杉醇奈米乳化液通過腸道淋巴系統吸收,而吉西他濱則直接進入血液循環系統,兩者最終都累積在胰臟腫瘤中,發揮其抗腫瘤作用。本研究建立一原位胰臟癌大鼠模型,以評估此口服膠囊之抗腫瘤功效。數據顯示此口服膠囊在抑制腫瘤生長、抑制纖維化基質增生及預防腫瘤轉移方面皆比靜脈注射組別更有效。儘管初步取得良好的治療結果,但根據文獻,奈米藥物載體進入體內後往往很快地被免疫系統清除代謝,並可能對正常組織造成毒性。相較之下,利用內源性細胞作為藥物載體,標靶體內病變部位可作為一種有效的替代策略;動物體內廣泛存在的免疫細胞具有對腫瘤的標靶性,可有效穿透生物屏障,將攜帶之藥物運輸至腫瘤深處。因此,在第二種口服奈米載體投遞系統中,利用阿黴素(Doxorubicin,DOX)和醋酸鋅合成奈米複合物(ZnD)。β-葡聚醣(β-Glucans)是在酵母細胞壁中發現的天然多醣類物質,可作為分散劑並吸附到奈米複合物表面(βGlus-ZnD)。經口服後,βGlus-ZnD可標靶小腸中的微皺摺細胞(Microfold cell,M cell)和腸道淋巴系統中的巨噬細胞(Mϕ)。隨著載體巨噬細胞(βGlus-ZnD@Mϕ)到達腫瘤部位,阿黴素可通過溶酶體胞吐(Lysosomal exocytosis)途徑釋放;同時,巨噬細胞被極化為M1表現型(抗腫瘤),不僅可逆轉腫瘤微環境之免疫抑制性,同時抑制了纖維化基質的增生。將此治療過程與免疫檢查點抑制劑(Immune checkpoint inhibitor)相結合,可進一步提高其抗腫瘤功效。接著建立一自發遠端轉移的胰臟癌小鼠模型,進一步驗證載體巨噬細胞的腫瘤標靶性。最終數據顯示治療後可有效抑制原位胰臟癌腫瘤,並減少遠端轉移結節之數量。本研究中兩種獨特的口服化療方法可望為胰臟癌患者提供更佳的治療策略,提高其生活品質。
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy that originates in the exocrine cells in the pancreas. Owing to a lack of early diagnosis and the inadequate response of PDAC to treatments, PDAC has a dismal five-year survival rate (less than 10%). One hallmark of PDAC, which considerably contributes to the unsatisfactory therapeutic outcomes, is excessive deposition of desmoplastic stroma in the tumor microenvironment (TME). Most chemotherapy drugs are administered by intravenous (i.v.) injection, which not only causes discomfort to patients but also cannot be performed at home without a medical professional. Therefore, in order to optimize the PDAC treatment modality, this work develops two oral nanocarrier delivery systems. The first an oral capsule system that enables the concurrent delivery of gemcitabine (GEM, hydrophilic) and paclitaxel (PTX, hydrophobic). GEM plus PTX is an effective combination treatment for advanced PDAC. The as-prepared oral capsules spontaneously initiate effervescence to produce bubble carriers in the small intestine. The bursting of these bubble carriers generates nanoemulsions that encapsulate PTX and disperses GEM in the aqueous phase, promoting intestinal absorption. Hydrophobic PTX is absorbed through the intestinal lymphatic system, while hydrophilic GEM directly enters the blood circulatory system; both ultimately accumulate in the pancreatic tumor, exerting their antitumor effect. The antitumor efficacy is evaluated in an orthotopic pancreatic tumor rat model. Data reveal that the as-proposed oral formulation is more effective in tumor inhibition, stroma resolution, and metastases prevention than the i.v. formulation. Despite this promising outcome, the literature demonstrates that such nanosized drug delivery systems can barely escape from rapid immunological clearance and may induce off-target toxicity. As an alternative strategy, endogenous cells are used as camouflaged drug carrier that target diseased sites. The ubiquitous immune cells that respond to (tumoral) chemotactic cues and penetrate biological barriers, are ideal for delivering concealed drug cargoes deep into the tumor. Therefore, for the second oral nanocarrier delivery system, doxorubicin (DOX) and zinc acetate are used to construct nanocomplexes (ZnD). β-Glucans, which are natural polysaccharides that are found in the cell walls of yeasts, are added as dispersants and adsorbed onto the nanocomplexes (βGlus-ZnD). After oral administration, βGlus-ZnD target microfold cells (M cell) in Peyer’s patches (to be absorbed) and macrophages (Mϕ) in the intestinal lymphatic system (to be hitchhiked). As the carrier macrophages (βGlus-ZnD@Mϕ) arrive at the tumor site, DOX is released via the lysosomal exocytosis pathway; simultaneously, Mϕ are repolarized to the M1-like (antitumor) phenotype, which not only reverses immunosuppressive TME but also resolves the desmoplastic stroma. Combining this process with immune checkpoint inhibitors further improves its antitumor efficacy. The tumor-homing effect of βGlus-ZnD@Mϕ is proven in a spontaneous metastatic PDAC mouse model. The data indicate that the primary pancreatic tumor is shrunk, while the number of metastatic nodules are decreased. The aforementioned unique approaches to oral chemotherapy provide opportunities for treating outpatients with PDAC, improving their quality of life.
摘要----------I
Abstract----------III
Table of Contents----------V
List of Figures----------VIII
List of Tables----------XIV
Chapter 1: Introduction----------1
1-1. Pancreas and pancreatic ductal adenocarcinoma (PDAC)----------1
1-2. Oral chemotherapy----------2
1-3. Gemcitabine (GEM) and Paclitaxel (PTX)----------3
1-4. Macrophage-laden drug delivery----------4
Chapter 2: A Bubble Bursting-Mediated Oral Drug Delivery of Lipophilic and Hydrophilic Chemotherapeutics for Treating Pancreatic Tumors in Rats----------6
2-1. Introduction----------7
2-2. Results and discussion----------10
2-2.1. Optimization of formulation----------10
2-2.2. Effervescent activity----------12
2-2.3. In vivo dose optimization----------14
2-2.4. Routes of absorption and biodistributions of drugs----------16
2-2.5. Pharmacokinetics of PTX and GEM----------19
2-2.6. Antitumor efficacy----------22
2-2.7. Animal positron emission tomography (PET) imaging----------24
2-2.8. Histological analyses----------26
2-3. Conclusions----------27
2-4. Materials and methods----------27
2-4.1. Materials----------27
2-4.2. Formulation optimization----------28
2-4.3. Effervescent activity----------28
2-4.4. Animal study----------29
2-4.5. Preparation of enteric-coated capsules----------29
2-4.6. Orthotopic pancreatic tumor model----------29
2-4.7. Routes of absorption and biodistributions of drugs----------30
2-4.8. Pharmacokinetics of PTX and GEM----------31
2-4.9. Antitumor efficacy----------31
2-4.10. Animal PET imaging----------32
2-4.11. Statistical analysis----------33
Chapter 3: Macrophage-Hitchhiked Orally Administered β-Glucans-Functionalized Nanoparticles as “Precision-Guided Stealth Missiles” for Targeted Pancreatic Cancer Therapy----------34
3-1. Introduction----------35
3-2. Results and discussion----------37
3-2.1. Characteristics of ZnD/βGlus-ZnD NPs----------37
3-2.2. Cellular uptake and trafficking of ZnD/βGlus-ZnD NPs----------40
3-2.3. Degradation of ZnD/βGlus-ZnD NPs in lysosomal environment----------41
3-2.4. Lysosomal efflux of DOX----------41
3-2.5. Cytotoxicity of ZnD/βGlus-ZnD NPs toward Mϕ----------44
3-2.6. Potential of βGlus-ZnD NPs in activation of Mϕ----------45
3-2.7. Biodistribution of ZnD/βGlus-ZnD NPs----------45
3-2.8. Antitumor efficacy of βGlus-ZnD NPs----------48
3-2.9. Modulation of TME----------51
3-2.10. Role of endogenous Mϕ----------52
3-2.11. Combination therapy----------54
3-2.12. In vivo safety----------55
3-2.13. Efficacy in late-stage treatment----------55
3-3. Conclusions----------59
3-4. Materials and methods----------60
3-4.1. Materials----------60
3-4.2. Preparation of yeast-derived βGlus----------60
3-4.3. Preparation and characterization of ZnD/βGlus-ZnD NPs----------61
3-4.4. Cellular uptake and trafficking of ZnD/βGlus-ZnD NPs----------62
3-4.5. Degradation of ZnD/βGlus-ZnD NPs in lysosomal environment----------63
3-4.6. Lysosomal Efflux of DOX----------63
3-4.7. Cytotoxicity of ZnD/βGlus-ZnD NPs toward Mϕ----------64
3-4.8. Potential of βGlus-ZnD NPs to Activate Mϕ----------64
3-4.9. Animal Study----------65
3-4.10. Biodistribution of ZnD/βGlus-ZnD NPs----------65
3-4.11. Transport route----------65
3-4.12. Antitumor efficacy----------66
3-4.13. Histological analysis----------67
3-4.14. Flow cytometry----------68
3-4.15. Statistical analysis----------68
Chapter 4: Reference----------69
Publications----------85
1. Klein, A. P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol. 18, 493−502 (2021).
2. Wood, L. D. & Hruban, R. H. Pathology and molecular genetics of pancreatic neoplasms. Cancer J. 18, 492 (2012).
3. Casadei, R., Ricci, C., Rega, D., D'Ambra, M., Pezzilli, R., Tomassetti, P., Campana, D., Nori, F. & Minni, F. Pancreatic endocrine tumors less than 4 cm in diameter: Resect or enucleate? A single-center experience. Pancreas 39, 825−828 (2010).
4. Geller, A. E., Shrestha, R., Woeste, M. R., Guo, H., Hu, X., Ding, C., Andreeva, K., Chariker, J. H., Zhou, M. & Tieri, D. The induction of peripheral trained immunity in the pancreas incites anti-tumor activity to control pancreatic cancer progression. Nat. Commun. 13, 1−20 (2022).
5. Von Hoff, D. D., Ervin, T., Arena, F. P., Chiorean, E. G., Infante, J., Moore, M., Seay, T., Tjulandin, S. A., Ma, W. W. & Saleh, M. N. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691−1703 (2013).
6. Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., Bruns, C. J. & Heeschen, C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313−323 (2007).
7. Conroy, T., Bachet, J.-B., Ayav, A., Huguet, F., Lambert, A., Caramella, C., Maréchal, R., Van Laethem, J.-L. & Ducreux, M. Current standards and new innovative approaches for treatment of pancreatic cancer. Eur. J. Cancer 57, 10−22 (2016).
8. Hosein, A. N., Brekken, R. A. & Maitra, A. Pancreatic cancer stroma: An update on therapeutic targeting strategies. Nat. Rev. Gastroenterol. Hepatol. 17, 487−505 (2020).
9. Von Ahrens, D., Bhagat, T. D., Nagrath, D., Maitra, A. & Verma, A. The role of stromal cancer-associated fibroblasts in pancreatic cancer. J. Hematol. Oncol. 10, 1−8 (2017).
10. Zinger, A., Koren, L., Adir, O., Poley, M., Alyan, M., Yaari, Z., Noor, N., Krinsky, N., Simon, A. & Gibori, H. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano 13, 11008−11021 (2019).
11. O'neill, V. & Twelves, C. Oral cancer treatment: Developments in chemotherapy and beyond. Br. J. Cancer 87, 933−937 (2002).
12. Banna, G. L., Collovà, E., Gebbia, V., Lipari, H., Giuffrida, P., Cavallaro, S., Condorelli, R., Buscarino, C., Tralongo, P. & Ferraù, F. Anticancer oral therapy: Emerging related issues. Cancer Treat. Rev. 36, 595−605 (2010).
13. Miao, Y. B., Lin, Y. J., Chen, K. H., Luo, P. K., Chuang, S. H., Yu, Y. T., Tai, H. M., Chen, C. T., Lin, K. J. & Sung, H. W. Engineering nano‐and microparticles as oral delivery vehicles to promote intestinal lymphatic drug transport. Adv. Mater. 33, 2104139 (2021).
14. Chen, G., Svirskis, D., Lu, W., Ying, M., Li, H., Liu, M. & Wen, J. N-Trimethyl chitosan coated nano-complexes enhance the oral bioavailability and chemotherapeutic effects of gemcitabine. Carbohydr. Polym. 273, 118592 (2021).
15. Moraes, S., Marinho, A., Lima, S., Granja, A., Araújo, J., Reis, S., Sousa, C. & Nunes, C. Targeted nanostructured lipid carriers for doxorubicin oral delivery. Int. J. Pharm. 592, 120029 (2021).
16. Miao, Y. B., Chen, K. H., Chen, C. T., Mi, F. L., Lin, Y. J., Chang, Y., Chiang, C. S., Wang, J. T., Lin, K. J. & Sung, H. W. A noninvasive gut-to-brain oral drug delivery system for treating brain tumors. Adv. Mater. e2100701 (2021).
17. Yang, B., Gao, J., Pei, Q., Xu, H. & Yu, H. Engineering prodrug nanomedicine for cancer immunotherapy. Adv. Sci. 7, 2002365 (2020).
18. Heinemann, V. Role of gemcitabine in the treatment of advanced and metastatic breast cancer. Oncology 64, 191−206 (2003).
19. Manegold, C., Zatloukal, P., Krejcy, K. & Blatter, J. Gemcitabine in non-small cell lung cancer (NSCLC). Invest. New Drugs 18, 29−42 (2000).
20. Lorusso, D., Di Stefano, A., Fanfani, F. & Scambia, G. Role of gemcitabine in ovarian cancer treatment. Ann. Oncol. 17, v188−v194 (2006).
21. Conroy, T., Desseigne, F., Ychou, M., Bouché, O., Guimbaud, R., Bécouarn, Y., Adenis, A., Raoul, J.-L., Gourgou-Bourgade, S. & de la Fouchardière, C. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364, 1817−1825 (2011).
22. Amrutkar, M. & Gladhaug, I. P. Pancreatic cancer chemoresistance to gemcitabine. Cancers (Basel) 9, 157 (2017).
23. Vishnu, P. & Roy, V. Safety and efficacy of nab-paclitaxel in the treatment of patients with breast cancer. Breast Cancer: Basic Clin. Res. 5, BCBCR. S5857 (2011).
24. Della Corte, L., Barra, F., Foreste, V., Giampaolino, P., Evangelisti, G., Ferrero, S. & Bifulco, G. Advances in paclitaxel combinations for treating cervical cancer. Expert Opin. Pharmacother. 21, 663−677 (2020).
25. Ma, W. W. & Hidalgo, M. The winning formulation: The development of paclitaxel in pancreatic cancer. Clin. Cancer Res. 19, 5572−5579 (2013).
26. Kline-Smith, S. L. & Walczak, C. E. Mitotic spindle assembly and chromosome segregation: Refocusing on microtubule dynamics. Mol. Cell 15, 317−327 (2004).
27. Ahmed, A. A., Wang, X., Lu, Z., Goldsmith, J., Le, X. F., Grandjean, G., Bartholomeusz, G., Broom, B. & Bast Jr, R. C. Modulating microtubule stability enhances the cytotoxic response of cancer cells to paclitaxel. Cancer Res. 71, 5806−5817 (2011).
28. Gelderblom, H., Verweij, J., Nooter, K. & Sparreboom, A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 37, 1590−1598 (2001).
29. Zhao, M., Lei, C., Yang, Y., Bu, X., Ma, H., Gong, H., Liu, J., Fang, X., Hu, Z. & Fang, Q. Abraxane, the nanoparticle formulation of paclitaxel can induce drug resistance by up-regulation of P-gp. PLoS One 10, e0131429 (2015).
30. Sofias, A. M., Dunne, M., Storm, G. & Allen, C. The battle of “nano” paclitaxel. Adv. Drug Del. Rev. 122, 20−30 (2017).
31. Dranitsaris, G., Yu, B., Wang, L., Sun, W., Zhou, Y., King, J., Kaura, S., Zhang, A. & Yuan, P. Abraxane® versus Taxol® for patients with advanced breast cancer: A prospective time and motion analysis from a Chinese health care perspective. J. Oncol. Pharm. Pract. 22, 205−211 (2016).
32. Yuan, H., Guo, H., Luan, X., He, M., Li, F., Burnett, J., Truchan, N. & Sun, D. Albumin nanoparticle of paclitaxel (Abraxane) decreases while taxol increases breast cancer stem cells in treatment of triple negative breast cancer. Mol. Pharm. 17, 2275−2286 (2020).
33. Sun, D., Zhou, S. & Gao, W. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano 14, 12281−12290 (2020).
34. Shitara, K., Takashima, A., Fujitani, K., Koeda, K., Hara, H., Nakayama, N., Hironaka, S., Nishikawa, K., Makari, Y. & Amagai, K. Nab-paclitaxel versus solvent-based paclitaxel in patients with previously treated advanced gastric cancer (ABSOLUTE): An open-label, randomised, non-inferiority, phase 3 trial. Lancet Gastroenterol. Hepatol. 2, 277−287 (2017).
35. Von Hoff, D. D., Ramanathan, R. K., Borad, M. J., Laheru, D. A., Smith, L. S., Wood, T. E., Korn, R. L., Desai, N., Trieu, V. & Iglesias, J. L. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: A phase I/II trial. J. Clin. Oncol. 29, 4548 (2011).
36. Alvarez, R., Musteanu, M., Garcia-Garcia, E., Lopez-Casas, P., Megias, D., Guerra, C., Muñoz, M., Quijano, Y., Cubillo, A. & Rodriguez-Pascual, J. Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br. J. Cancer 109, 926−933 (2013).
37. Cullis, J., Siolas, D., Avanzi, A., Barui, S., Maitra, A. & Bar-Sagi, D. Macropinocytosis of nab-paclitaxel drives macrophage activation in pancreatic cancer. Cancer Immunol. Res. 5, 182−190 (2017).
38. Frese, K. K., Neesse, A., Cook, N., Bapiro, T. E., Lolkema, M. P., Jodrell, D. I. & Tuveson, D. A. Nab-paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov. 2, 260−269 (2012).
39. Meng, H., Wang, M., Liu, H., Liu, X., Situ, A., Wu, B., Ji, Z., Chang, C. H. & Nel, A. E. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 9, 3540−3557 (2015).
40. Rosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1−12 (2018).
41. Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 17, 20−37 (2017).
42. Timin, A. S., Litvak, M. M., Gorin, D. A., Atochina‐Vasserman, E. N., Atochin, D. N. & Sukhorukov, G. B. Cell‐based drug delivery and use of nano‐and microcarriers for cell functionalization. Adv. Healthc. Mater. 7, 1700818 (2018).
43. Zhang, W., Wang, M., Tang, W., Wen, R., Zhou, S., Lee, C., Wang, H., Jiang, W., Delahunty, I. M. & Zhen, Z. Nanoparticle‐laden macrophages for tumor‐tropic drug delivery. Adv. Mater. 30, 1805557 (2018).
44. Zhao, X., Li, F., Li, Y., Wang, H., Ren, H., Chen, J., Nie, G. & Hao, J. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials 46, 13−25 (2015).
45. Tanaka, H. Y. & Kano, M. R. Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment. Cancer Sci. 109, 2085−2092 (2018).
46. Mittal, A., Chitkara, D., Behrman, S. W. & Mahato, R. I. Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials 35, 7077−7087 (2014).
47. Chen, G., Svirskis, D., Lu, W., Ying, M., Huang, Y. & Wen, J. N-Trimethyl chitosan nanoparticles and CSKSSDYQC peptide: N-Trimethyl chitosan conjugates enhance the oral bioavailability of gemcitabine to treat breast cancer. J. Control. Release 277, 142−153 (2018).
48. Zhang, D. Y., Dmello, C., Chen, L., Arrieta, V. A., Gonzalez-Buendia, E., Kane, J. R., Magnusson, L. P., Baran, A., James, C. D. & Horbinski, C. Ultrasound-mediated delivery of paclitaxel for glioma: A comparative study of distribution, toxicity, and efficacy of albumin-bound versus cremophor formulations. Clin. Cancer Res. 26, 477−486 (2020).
49. He, R. & Yin, C. Trimethyl chitosan based conjugates for oral and intravenous delivery of paclitaxel. Acta Biomater. 53, 355−366 (2017).
50. Lee, M. K., Lim, S. J. & Kim, C. K. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 28, 2137−2146 (2007).
51. Chuang, E. Y., Lin, K. J., Huang, T. Y., Chen, H. L., Miao, Y. B., Lin, P. Y., Chen, C. T., Juang, J. H. & Sung, H. W. An intestinal “transformers”-like nanocarrier system for enhancing the oral bioavailability of poorly water-soluble drugs. ACS Nano 12, 6389−6397 (2018).
52. Alama, T., Kusamori, K., Morishita, M., Katsumi, H., Sakane, T. & Yamamoto, A. Mechanistic studies on the absorption-enhancing effects of gemini surfactant on the intestinal absorption of poorly absorbed hydrophilic drugs in rats. Pharmaceutics 11, 170 (2019).
53. Lin, P. Y., Chen, K. H., Miao, Y. B., Chen, H. L., Lin, K. J., Chen, C. T., Yeh, C. N., Chang, Y. & Sung, H. W. Phase‐changeable nanoemulsions for oral delivery of a therapeutic peptide: Toward targeting the pancreas for antidiabetic treatments using lymphatic transport. Adv. Funct. Mater. 29, 1809015 (2019).
54. Krug, S. M., Amasheh, M., Dittmann, I., Christoffel, I., Fromm, M. & Amasheh, S. Sodium caprate as an enhancer of macromolecule permeation across tricellular tight junctions of intestinal cells. Biomaterials 34, 275−282 (2013).
55. Jassim, Z. E., Rajab, N. A. & Mohammed, N. H. Study the effect of wet granulation and fusion methods on preparation, characterization, and release of lornoxicam sachet effervescent granules. Drug Invent. Today 10, 1612−1616 (2018).
56. Aslani, A. & Jahangiri, H. Formulation, characterization and physicochemical evaluation of ranitidine effervescent tablets. Adv. Pharm. Bull. 3, 315 (2013).
57. Zhang, Y. M., Zhang, N. Y., Xiao, K., Yu, Q. & Liu, Y. Photo‐controlled reversible microtubule assembly mediated by paclitaxel‐modified cyclodextrin. Angew. Chem. 130, 8785−8789 (2018).
58. Yang, H., Mao, W., Rodriguez-Aguayo, C., Mangala, L. S., Bartholomeusz, G., Iles, L. R., Jennings, N. B., Ahmed, A. A., Sood, A. K. & Lopez-Berestein, G. Paclitaxel sensitivity of ovarian cancer can be enhanced by knocking down pairs of kinases that regulate MAP4 phosphorylation and microtubule stability combinatorial siRNA therapy enhances paclitaxel sensitivity. Clin. Cancer Res. 24, 5072−5084 (2018).
59. Kim, K. S., Suzuki, K., Cho, H., Youn, Y. S. & Bae, Y. H. Oral nanoparticles exhibit specific high-efficiency intestinal uptake and lymphatic transport. ACS Nano 12, 8893−8900 (2018).
60. Holm, R., Müllertz, A. & Mu, H. Bile salts and their importance for drug absorption. Int. J. Pharm. 453, 44−55 (2013).
61. Trevaskis, N. L., Kaminskas, L. M. & Porter, C. J. From sewer to saviour—Targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 14, 781−803 (2015).
62. Welling, S. H., Hubálek, F., Jacobsen, J., Brayden, D. J., Rahbek, U. L. & Buckley, S. T. The role of citric acid in oral peptide and protein formulations: Relationship between calcium chelation and proteolysis inhibition. Eur. J. Pharm. Biopharm. 86, 544−551 (2014).
63. Cho, M., Scieszka, J. & Burton, P. Citric acid as an adjuvant for transepithelial transport. Int. J. Pharm. 52, 79−81 (1989).
64. Lin, P. Y., Chiu, Y. L., Huang, J. H., Chuang, E. Y., Mi, F. L., Lin, K. J., Juang, J. H., Sung, H. W. & Leong, K. W. Oral nonviral gene delivery for chronic protein replacement therapy. Adv. Sci. 5, 1701079 (2018).
65. Reuter, F., Bade, S., Hirst, T. R. & Frey, A. Bystander protein protects potential vaccine-targeting ligands against intestinal proteolysis. J. Control. Release 137, 98−103 (2009).
66. Huang, W., Chen, R., Peng, Y., Duan, F., Huang, Y., Guo, W., Chen, X. & Nie, L. In vivo quantitative photoacoustic diagnosis of gastric and intestinal dysfunctions with a broad pH-responsive sensor. ACS Nano 13, 9561−9570 (2019).
67. Li, J., Thamphiwatana, S., Liu, W., Esteban-Fernández de Ávila, B., Angsantikul, P., Sandraz, E., Wang, J., Xu, T., Soto, F. & Ramez, V. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano 10, 9536−9542 (2016).
68. Kang, J. H., Hwang, J. Y., Seo, J. W., Kim, H. S. & Shin, U. S. Small intestine-and colon-specific smart oral drug delivery system with controlled release characteristic. Mater. Sci. Eng. C Mater. Biol. Appl. 91, 247−254 (2018).
69. Pouton, C. W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci. 11, S93−S98 (2000).
70. Mäkinen, K., Loimas, S., Nuutinen, P., Eskelinen, M. & Alhava, E. The growth pattern and microvasculature of pancreatic tumours induced with cultured carcinoma cells. Br. J. Cancer 82, 900−904 (2000).
71. Hotz, B., Buhr, H. J. & Hotz, H. G. Intravital microscopic characterization of suramin effects in an orthotopic immunocompetent rat model of pancreatic cancer. J. Gastrointest. Surg. 12, 900−906 (2008).
72. Hotz, H. G., Reber, H. A., Hotz, B., Foitzik, T., Buhr, H. J., Cortina, G. & Hines, O. J. An improved clinical model of orthotopic pancreatic cancer in immunocompetent Lewis rats. Pancreas 22, 113−121 (2001).
73. Chen, P. M., Pan, W. Y., Wu, C. Y., Yeh, C. Y., Korupalli, C., Luo, P. K., Chou, C. J., Chia, W. T. & Sung, H. W. Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination. Biomaterials 230, 119629 (2020).
74. Bibby, M. Orthotopic models of cancer for preclinical drug evaluation: Advantages and disadvantages. Eur. J. Cancer 40, 852−857 (2004).
75. Attili-Qadri, S., Karra, N., Nemirovski, A., Schwob, O., Talmon, Y., Nassar, T. & Benita, S. Oral delivery system prolongs blood circulation of docetaxel nanocapsules via lymphatic absorption. Proc. Natl. Acad. Sci. U. S. A. 110, 17498−17503 (2013).
76. Niu, Z., Conejos-Sánchez, I., Griffin, B. T., O’Driscoll, C. M. & Alonso, M. J. Lipid-based nanocarriers for oral peptide delivery. Adv. Drug Del. Rev. 106, 337−354 (2016).
77. Apparaju, S. K., Gudelsky, G. A. & Desai, P. B. Pharmacokinetics of gemcitabine in tumor and non-tumor extracellular fluid of brain: An in vivo assessment in rats employing intracerebral microdialysis. Cancer Chemother. Pharmacol. 61, 223−229 (2008).
78. Bromberg, L. Polymeric micelles in oral chemotherapy. J. Control. Release 128, 99−112 (2008).
79. Schudel, A., Francis, D. M. & Thomas, S. N. Material design for lymph node drug delivery. Nat. Rev. Mater. 4, 415−428 (2019).
80. Feeney, O. M., Crum, M. F., McEvoy, C. L., Trevaskis, N. L., Williams, H. D., Pouton, C. W., Charman, W. N., Bergström, C. A. S. & Porter, C. J. H. 50 years of oral lipid-based formulations: Provenance, progress and future perspectives. Adv. Drug Del. Rev. 101, 167−194 (2016).
81. Mowers, E. E., Sharifi, M. N. & Macleod, K. F. Autophagy in cancer metastasis. Oncogene 36, 1619−1630 (2017).
82. Huang, C. C., Chia, W. T., Chung, M. F., Lin, K. J., Hsiao, C. W., Jin, C., Lim, W. H., Chen, C. C. & Sung, H. W. An implantable depot that can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy. J. Am. Chem. Soc. 138, 5222−5225 (2016).
83. Yano, S., Takehara, K., Miwa, S., Kishimoto, H., Tazawa, H., Urata, Y., Kagawa, S., Bouvet, M., Fujiwara, T. & Hoffman, R. M. In vivo isolation of a highly-aggressive variant of triple-negative human breast cancer MDA-MB-231 using serial orthotopic transplantation. Anticancer Res. 36, 3817 (2016).
84. Somers, K. D., Brown, R. R., Holterman, D. A., Yousefieh, N., Glass, W. F., Wright Jr, G. L., Schellhammer, P. F., Qian, J. & Ciavarra, R. P. Orthotopic treatment model of prostate cancer and metastasis in the immunocompetent mouse: Efficacy of flt3 ligand immunotherapy. Int. J. Cancer 107, 773−780 (2003).
85. Noguchi, M., Stamey, T. A., McNeal, J. E. & Yemoto, C. E. Assessment of morphometric measurements of prostate carcinoma volume. Cancer 89, 1056−1064 (2000).
86. Yeh, C. N., Lin, K. J., Hsiao, I. T., Yen, T. C., Chen, T. W., Jan, Y. Y., Chung, Y. H., Lin, C. F. & Chen, M. F. Animal PET for thioacetamide-induced rat cholangiocarcinoma: A novel and reliable platform. Mol. Imaging Biol. 10, 209−216 (2008).
87. Costa-Silva, B., Aiello, N. M., Ocean, A. J., Singh, S., Zhang, H., Thakur, B. K., Becker, A., Hoshino, A., Mark, M. T. & Molina, H. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816−826 (2015).
88. Zhao, Y., Chu, X., Chen, J., Wang, Y., Gao, S., Jiang, Y., Zhu, X., Tan, G., Zhao, W. & Yi, H. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat. Commun. 7, 1−12 (2016).
89. Zhang, X., Xu, X., Chen, Y., Dou, Y., Zhou, X., Li, L., Li, C., An, H., Tao, H. & Hu, H. Bioinspired yeast microcapsules loaded with self-assembled nanotherapies for targeted treatment of cardiovascular disease. Mater. Today 20, 301−313 (2017).
90. Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R. & Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751−760 (2007).
91. Khdair, A., Hamad, I., Alkhatib, H., Bustanji, Y., Mohammad, M., Tayem, R. & Aiedeh, K. Modified-chitosan nanoparticles: Novel drug delivery systems improve oral bioavailability of doxorubicin. Eur. J. Pharm. Sci. 93, 38−44 (2016).
92. Barick, K., Nigam, S. & Bahadur, D. Nanoscale assembly of mesoporous ZnO: A potential drug carrier. J. Mater. Chem. 20, 6446−6452 (2010).
93. Goodridge, H. S., Reyes, C. N., Becker, C. A., Katsumoto, T. R., Ma, J., Wolf, A. J., Bose, N., Chan, A. S., Magee, A. S. & Danielson, M. E. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472, 471−475 (2011).
94. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399−416 (2017).
95. Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 11, 889−896 (2010).
96. Sung, Y. C., Jin, P. R., Chu, L. A., Hsu, F. F., Wang, M. R., Chang, C. C., Chiou, S. J., Qiu, J. T., Gao, D. Y. & Lin, C. C. Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat. Nanotechnol. 14, 1160−1169 (2019).
97. Cui, C., Chakraborty, K., Tang, X. A., Schoenfelt, K. Q., Hoffman, A., Blank, A., McBeth, B., Pulliam, N., Reardon, C. A. & Kulkarni, S. A. A lysosome-targeted DNA nanodevice selectively targets macrophages to attenuate tumours. Nat. Nanotechnol. 16, 1394−1402 (2021).
98. Duan, Z. & Luo, Y. Targeting macrophages in cancer immunotherapy. Signal Transduct. Target. Ther. 6, 1−21 (2021).
99. Wei, Z., Zhang, X., Yong, T., Bie, N., Zhan, G., Li, X., Liang, Q., Li, J., Yu, J. & Huang, G. Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles. Nat. Commun. 12, 1−20 (2021).
100. Chen, Q., Wang, C., Zhang, X., Chen, G., Hu, Q., Li, H., Wang, J., Wen, D., Zhang, Y. & Lu, Y. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89−97 (2019).
101. Patel, A. J., Willsmore, Z. N., Khan, N., Richter, A., Naidu, B., Drayson, M. T., Papa, S., Cope, A., Karagiannis, S. N. & Perucha, E. Regulatory B cell repertoire defects predispose lung cancer patients to immune-related toxicity following checkpoint blockade. Nat. Commun. 13, 1−16 (2022).
102. Soto, E. R. & Ostroff, G. R. Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA delivery. Bioconjug. Chem. 19, 840−848 (2008).
103. Zhai, H., Gunness, P. & Gidley, M. J. Barley β-glucan effects on emulsification and in vitro lipolysis of canola oil are modulated by molecular size, mixing method, and emulsifier type. Food Hydrocoll. 103, 105643 (2020).
104. Tang, L., Shi, J., Wang, X., Zhang, S., Wu, H., Sun, H. & Jiang, Z. Coordination polymer nanocapsules prepared using metal–organic framework templates for pH-responsive drug delivery. Nanotechnology 28, 275601 (2017).
105. Laginha, K. M., Verwoert, S., Charrois, G. J. & Allen, T. M. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin. Cancer Res. 11, 6944−6949 (2005).
106. Luzio, J. P., Pryor, P. R. & Bright, N. A. Lysosomes: Fusion and function. Nat. Rev. Mol. Cell Biol. 8, 622−632 (2007).
107. Sauer, U. G., Werle, K., Waindok, H., Hirth, S., Hachmoller, O. & Wohlleben, W. Critical choices in predicting stone wool biodurability: Lysosomal fluid compositions and binder effects. Chem. Res. Toxicol. 34, 780−792 (2021).
108. Zhitomirsky, B. & Assaraf, Y. G. Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis. Oncotarget 8, 45117 (2017).
109. Hu, M., Wang, Y., Liu, Z., Yu, Z., Guan, K., Liu, M., Wang, M., Tan, J. & Huang, L. Hepatic macrophages act as a central hub for relaxin-mediated alleviation of liver fibrosis. Nat. Nanotechnol. 16, 466−477 (2021).
110. Zhou, X., Liu, Y., Hu, M., Wang, M., Liu, X. & Huang, L. Relaxin gene delivery modulates macrophages to resolve cancer fibrosis and synergizes with immune checkpoint blockade therapy. Sci. Adv. 7, eabb6596 (2021).
111. Shields IV, C. W., Evans, M. A., Wang, L. L. W., Baugh, N., Iyer, S., Wu, D., Zhao, Z., Pusuluri, A., Ukidve, A. & Pan, D. C. Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6, eaaz6579 (2020).
112. Chauhan, V. P., Martin, J. D., Liu, H., Lacorre, D. A., Jain, S. R., Kozin, S. V., Stylianopoulos, T., Mousa, A. S., Han, X. & Adstamongkonkul, P. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 4, 1−11 (2013).
113. Sung, Y. C., Liu, Y. C., Chao, P. H., Chang, C. C., Jin, P. R., Lin, T. T., Lin, J. A., Cheng, H. T., Wang, J. & Lai, C. P. Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics 8, 894 (2018).
114. Li, X., Luo, H., Ye, Y., Chen, X., Zou, Y., Duan, J. & Xiang, D. β‑Glucan, a dectin‑1 ligand, promotes macrophage M1 polarization via NF‑κB/autophagy pathway. Int. J. Oncol. 54, 271−282 (2019).
115. Liu, M., Luo, F., Ding, C., Albeituni, S., Hu, X., Ma, Y., Cai, Y., McNally, L., Sanders, M. A. & Jain, D. Dectin-1 activation by a natural product β-glucan converts immunosuppressive macrophages into an M1-like phenotype. J. Immunol. 195, 5055−5065 (2015).
116. Lee, C., Verma, R., Byun, S., Jeun, E. J., Kim, G. C., Lee, S., Kang, H. J., Kim, C. J., Sharma, G. & Lahiri, A. Structural specificities of cell surface β-glucan polysaccharides determine commensal yeast mediated immuno-modulatory activities. Nat. Commun. 12, 1−16 (2021).
117. Xu, J., Ma, Q., Zhang, Y., Fei, Z., Sun, Y., Fan, Q., Liu, B., Bai, J., Yu, Y. & Chu, J. Yeast-derived nanoparticles remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat. Commun. 13, 1−15 (2022).
118. Chen, K. H., Miao, Y. B., Shang, C. Y., Huang, T. Y., Yu, Y. T., Yeh, C. N., Song, H. L., Chen, C. T., Mi, F. L. & Lin, K. J. A bubble bursting-mediated oral drug delivery system that enables concurrent delivery of lipophilic and hydrophilic chemotherapeutics for treating pancreatic tumors in rats. Biomaterials 255, 120157 (2020).
119. Russell, J. H. & Ley, T. J. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 20, 323 (2002).
120. Nielsen, S. R., Quaranta, V., Linford, A., Emeagi, P., Rainer, C., Santos, A., Ireland, L., Sakai, T., Sakai, K. & Kim, Y. S. Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat. Cell Biol. 18, 549−560 (2016).
121. Zhao, J., Xiao, Z., Li, T., Chen, H., Yuan, Y., Wang, Y. A., Hsiao, C. H., Chow, D. S., Overwijk, W. W. & Li, C. Stromal modulation reverses primary resistance to immune checkpoint blockade in pancreatic cancer. ACS Nano 12, 9881−9893 (2018).
122. Liu, X., Jiang, J., Liao, Y. P., Tang, I., Zheng, E., Qiu, W., Lin, M., Wang, X., Ji, Y. & Mei, K. C. Combination chemo‐immunotherapy for pancreatic cancer using the immunogenic effects of an irinotecan silicasome aanocarrier plus anti‐PD‐1. Adv. Sci. 8, 2002147 (2021).
123. Hao, X., Hu, X., Zhang, C., Chen, S., Li, Z., Yang, X., Liu, H., Jia, G., Liu, D. & Ge, K. Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite. ACS Nano 9, 9614−9625 (2015).
124. An, L., Hu, X. W., Zhang, S., Hu, X., Song, Z., Naz, A., Zi, Z., Wu, J., Li, C. & Zou, Y. UVRAG deficiency exacerbates doxorubicin-induced cardiotoxicity. Sci. Rep. 7, 1−12 (2017).
125. Zhou, X., Zhang, X., Han, S., Dou, Y., Liu, M., Zhang, L., Guo, J., Shi, Q., Gong, G. & Wang, R. Yeast microcapsule-mediated targeted delivery of diverse nanoparticles for imaging and therapy via the oral route. Nano Lett. 17, 1056−1064 (2017).
126. Kivelä, R., Gates, F. & Sontag-Strohm, T. Degradation of cereal beta-glucan by ascorbic acid induced oxygen radicals. J. Cereal Sci. 49, 1−3 (2009).
127. Fedorova, O., Petukhov, A., Daks, A., Shuvalov, O., Leonova, T., Vasileva, E., Aksenov, N., Melino, G. & Barlev, N. A. Orphan receptor NR4A3 is a novel target of p53 that contributes to apoptosis. Oncogene 38, 2108−2122 (2019).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *