|
1. Klein, A. P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol. 18, 493−502 (2021). 2. Wood, L. D. & Hruban, R. H. Pathology and molecular genetics of pancreatic neoplasms. Cancer J. 18, 492 (2012). 3. Casadei, R., Ricci, C., Rega, D., D'Ambra, M., Pezzilli, R., Tomassetti, P., Campana, D., Nori, F. & Minni, F. Pancreatic endocrine tumors less than 4 cm in diameter: Resect or enucleate? A single-center experience. Pancreas 39, 825−828 (2010). 4. Geller, A. E., Shrestha, R., Woeste, M. R., Guo, H., Hu, X., Ding, C., Andreeva, K., Chariker, J. H., Zhou, M. & Tieri, D. The induction of peripheral trained immunity in the pancreas incites anti-tumor activity to control pancreatic cancer progression. Nat. Commun. 13, 1−20 (2022). 5. Von Hoff, D. D., Ervin, T., Arena, F. P., Chiorean, E. G., Infante, J., Moore, M., Seay, T., Tjulandin, S. A., Ma, W. W. & Saleh, M. N. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691−1703 (2013). 6. Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., Bruns, C. J. & Heeschen, C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313−323 (2007). 7. Conroy, T., Bachet, J.-B., Ayav, A., Huguet, F., Lambert, A., Caramella, C., Maréchal, R., Van Laethem, J.-L. & Ducreux, M. Current standards and new innovative approaches for treatment of pancreatic cancer. Eur. J. Cancer 57, 10−22 (2016). 8. Hosein, A. N., Brekken, R. A. & Maitra, A. Pancreatic cancer stroma: An update on therapeutic targeting strategies. Nat. Rev. Gastroenterol. Hepatol. 17, 487−505 (2020). 9. Von Ahrens, D., Bhagat, T. D., Nagrath, D., Maitra, A. & Verma, A. The role of stromal cancer-associated fibroblasts in pancreatic cancer. J. Hematol. Oncol. 10, 1−8 (2017). 10. Zinger, A., Koren, L., Adir, O., Poley, M., Alyan, M., Yaari, Z., Noor, N., Krinsky, N., Simon, A. & Gibori, H. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano 13, 11008−11021 (2019). 11. O'neill, V. & Twelves, C. Oral cancer treatment: Developments in chemotherapy and beyond. Br. J. Cancer 87, 933−937 (2002). 12. Banna, G. L., Collovà, E., Gebbia, V., Lipari, H., Giuffrida, P., Cavallaro, S., Condorelli, R., Buscarino, C., Tralongo, P. & Ferraù, F. Anticancer oral therapy: Emerging related issues. Cancer Treat. Rev. 36, 595−605 (2010). 13. Miao, Y. B., Lin, Y. J., Chen, K. H., Luo, P. K., Chuang, S. H., Yu, Y. T., Tai, H. M., Chen, C. T., Lin, K. J. & Sung, H. W. Engineering nano‐and microparticles as oral delivery vehicles to promote intestinal lymphatic drug transport. Adv. Mater. 33, 2104139 (2021). 14. Chen, G., Svirskis, D., Lu, W., Ying, M., Li, H., Liu, M. & Wen, J. N-Trimethyl chitosan coated nano-complexes enhance the oral bioavailability and chemotherapeutic effects of gemcitabine. Carbohydr. Polym. 273, 118592 (2021). 15. Moraes, S., Marinho, A., Lima, S., Granja, A., Araújo, J., Reis, S., Sousa, C. & Nunes, C. Targeted nanostructured lipid carriers for doxorubicin oral delivery. Int. J. Pharm. 592, 120029 (2021). 16. Miao, Y. B., Chen, K. H., Chen, C. T., Mi, F. L., Lin, Y. J., Chang, Y., Chiang, C. S., Wang, J. T., Lin, K. J. & Sung, H. W. A noninvasive gut-to-brain oral drug delivery system for treating brain tumors. Adv. Mater. e2100701 (2021). 17. Yang, B., Gao, J., Pei, Q., Xu, H. & Yu, H. Engineering prodrug nanomedicine for cancer immunotherapy. Adv. Sci. 7, 2002365 (2020). 18. Heinemann, V. Role of gemcitabine in the treatment of advanced and metastatic breast cancer. Oncology 64, 191−206 (2003). 19. Manegold, C., Zatloukal, P., Krejcy, K. & Blatter, J. Gemcitabine in non-small cell lung cancer (NSCLC). Invest. New Drugs 18, 29−42 (2000). 20. Lorusso, D., Di Stefano, A., Fanfani, F. & Scambia, G. Role of gemcitabine in ovarian cancer treatment. Ann. Oncol. 17, v188−v194 (2006). 21. Conroy, T., Desseigne, F., Ychou, M., Bouché, O., Guimbaud, R., Bécouarn, Y., Adenis, A., Raoul, J.-L., Gourgou-Bourgade, S. & de la Fouchardière, C. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364, 1817−1825 (2011). 22. Amrutkar, M. & Gladhaug, I. P. Pancreatic cancer chemoresistance to gemcitabine. Cancers (Basel) 9, 157 (2017). 23. Vishnu, P. & Roy, V. Safety and efficacy of nab-paclitaxel in the treatment of patients with breast cancer. Breast Cancer: Basic Clin. Res. 5, BCBCR. S5857 (2011). 24. Della Corte, L., Barra, F., Foreste, V., Giampaolino, P., Evangelisti, G., Ferrero, S. & Bifulco, G. Advances in paclitaxel combinations for treating cervical cancer. Expert Opin. Pharmacother. 21, 663−677 (2020). 25. Ma, W. W. & Hidalgo, M. The winning formulation: The development of paclitaxel in pancreatic cancer. Clin. Cancer Res. 19, 5572−5579 (2013). 26. Kline-Smith, S. L. & Walczak, C. E. Mitotic spindle assembly and chromosome segregation: Refocusing on microtubule dynamics. Mol. Cell 15, 317−327 (2004). 27. Ahmed, A. A., Wang, X., Lu, Z., Goldsmith, J., Le, X. F., Grandjean, G., Bartholomeusz, G., Broom, B. & Bast Jr, R. C. Modulating microtubule stability enhances the cytotoxic response of cancer cells to paclitaxel. Cancer Res. 71, 5806−5817 (2011). 28. Gelderblom, H., Verweij, J., Nooter, K. & Sparreboom, A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 37, 1590−1598 (2001). 29. Zhao, M., Lei, C., Yang, Y., Bu, X., Ma, H., Gong, H., Liu, J., Fang, X., Hu, Z. & Fang, Q. Abraxane, the nanoparticle formulation of paclitaxel can induce drug resistance by up-regulation of P-gp. PLoS One 10, e0131429 (2015). 30. Sofias, A. M., Dunne, M., Storm, G. & Allen, C. The battle of “nano” paclitaxel. Adv. Drug Del. Rev. 122, 20−30 (2017). 31. Dranitsaris, G., Yu, B., Wang, L., Sun, W., Zhou, Y., King, J., Kaura, S., Zhang, A. & Yuan, P. Abraxane® versus Taxol® for patients with advanced breast cancer: A prospective time and motion analysis from a Chinese health care perspective. J. Oncol. Pharm. Pract. 22, 205−211 (2016). 32. Yuan, H., Guo, H., Luan, X., He, M., Li, F., Burnett, J., Truchan, N. & Sun, D. Albumin nanoparticle of paclitaxel (Abraxane) decreases while taxol increases breast cancer stem cells in treatment of triple negative breast cancer. Mol. Pharm. 17, 2275−2286 (2020). 33. Sun, D., Zhou, S. & Gao, W. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano 14, 12281−12290 (2020). 34. Shitara, K., Takashima, A., Fujitani, K., Koeda, K., Hara, H., Nakayama, N., Hironaka, S., Nishikawa, K., Makari, Y. & Amagai, K. Nab-paclitaxel versus solvent-based paclitaxel in patients with previously treated advanced gastric cancer (ABSOLUTE): An open-label, randomised, non-inferiority, phase 3 trial. Lancet Gastroenterol. Hepatol. 2, 277−287 (2017). 35. Von Hoff, D. D., Ramanathan, R. K., Borad, M. J., Laheru, D. A., Smith, L. S., Wood, T. E., Korn, R. L., Desai, N., Trieu, V. & Iglesias, J. L. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: A phase I/II trial. J. Clin. Oncol. 29, 4548 (2011). 36. Alvarez, R., Musteanu, M., Garcia-Garcia, E., Lopez-Casas, P., Megias, D., Guerra, C., Muñoz, M., Quijano, Y., Cubillo, A. & Rodriguez-Pascual, J. Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br. J. Cancer 109, 926−933 (2013). 37. Cullis, J., Siolas, D., Avanzi, A., Barui, S., Maitra, A. & Bar-Sagi, D. Macropinocytosis of nab-paclitaxel drives macrophage activation in pancreatic cancer. Cancer Immunol. Res. 5, 182−190 (2017). 38. Frese, K. K., Neesse, A., Cook, N., Bapiro, T. E., Lolkema, M. P., Jodrell, D. I. & Tuveson, D. A. Nab-paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov. 2, 260−269 (2012). 39. Meng, H., Wang, M., Liu, H., Liu, X., Situ, A., Wu, B., Ji, Z., Chang, C. H. & Nel, A. E. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 9, 3540−3557 (2015). 40. Rosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1−12 (2018). 41. Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 17, 20−37 (2017). 42. Timin, A. S., Litvak, M. M., Gorin, D. A., Atochina‐Vasserman, E. N., Atochin, D. N. & Sukhorukov, G. B. Cell‐based drug delivery and use of nano‐and microcarriers for cell functionalization. Adv. Healthc. Mater. 7, 1700818 (2018). 43. Zhang, W., Wang, M., Tang, W., Wen, R., Zhou, S., Lee, C., Wang, H., Jiang, W., Delahunty, I. M. & Zhen, Z. Nanoparticle‐laden macrophages for tumor‐tropic drug delivery. Adv. Mater. 30, 1805557 (2018). 44. Zhao, X., Li, F., Li, Y., Wang, H., Ren, H., Chen, J., Nie, G. & Hao, J. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials 46, 13−25 (2015). 45. Tanaka, H. Y. & Kano, M. R. Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment. Cancer Sci. 109, 2085−2092 (2018). 46. Mittal, A., Chitkara, D., Behrman, S. W. & Mahato, R. I. Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials 35, 7077−7087 (2014). 47. Chen, G., Svirskis, D., Lu, W., Ying, M., Huang, Y. & Wen, J. N-Trimethyl chitosan nanoparticles and CSKSSDYQC peptide: N-Trimethyl chitosan conjugates enhance the oral bioavailability of gemcitabine to treat breast cancer. J. Control. Release 277, 142−153 (2018). 48. Zhang, D. Y., Dmello, C., Chen, L., Arrieta, V. A., Gonzalez-Buendia, E., Kane, J. R., Magnusson, L. P., Baran, A., James, C. D. & Horbinski, C. Ultrasound-mediated delivery of paclitaxel for glioma: A comparative study of distribution, toxicity, and efficacy of albumin-bound versus cremophor formulations. Clin. Cancer Res. 26, 477−486 (2020). 49. He, R. & Yin, C. Trimethyl chitosan based conjugates for oral and intravenous delivery of paclitaxel. Acta Biomater. 53, 355−366 (2017). 50. Lee, M. K., Lim, S. J. & Kim, C. K. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 28, 2137−2146 (2007). 51. Chuang, E. Y., Lin, K. J., Huang, T. Y., Chen, H. L., Miao, Y. B., Lin, P. Y., Chen, C. T., Juang, J. H. & Sung, H. W. An intestinal “transformers”-like nanocarrier system for enhancing the oral bioavailability of poorly water-soluble drugs. ACS Nano 12, 6389−6397 (2018). 52. Alama, T., Kusamori, K., Morishita, M., Katsumi, H., Sakane, T. & Yamamoto, A. Mechanistic studies on the absorption-enhancing effects of gemini surfactant on the intestinal absorption of poorly absorbed hydrophilic drugs in rats. Pharmaceutics 11, 170 (2019). 53. Lin, P. Y., Chen, K. H., Miao, Y. B., Chen, H. L., Lin, K. J., Chen, C. T., Yeh, C. N., Chang, Y. & Sung, H. W. Phase‐changeable nanoemulsions for oral delivery of a therapeutic peptide: Toward targeting the pancreas for antidiabetic treatments using lymphatic transport. Adv. Funct. Mater. 29, 1809015 (2019). 54. Krug, S. M., Amasheh, M., Dittmann, I., Christoffel, I., Fromm, M. & Amasheh, S. Sodium caprate as an enhancer of macromolecule permeation across tricellular tight junctions of intestinal cells. Biomaterials 34, 275−282 (2013). 55. Jassim, Z. E., Rajab, N. A. & Mohammed, N. H. Study the effect of wet granulation and fusion methods on preparation, characterization, and release of lornoxicam sachet effervescent granules. Drug Invent. Today 10, 1612−1616 (2018). 56. Aslani, A. & Jahangiri, H. Formulation, characterization and physicochemical evaluation of ranitidine effervescent tablets. Adv. Pharm. Bull. 3, 315 (2013). 57. Zhang, Y. M., Zhang, N. Y., Xiao, K., Yu, Q. & Liu, Y. Photo‐controlled reversible microtubule assembly mediated by paclitaxel‐modified cyclodextrin. Angew. Chem. 130, 8785−8789 (2018). 58. Yang, H., Mao, W., Rodriguez-Aguayo, C., Mangala, L. S., Bartholomeusz, G., Iles, L. R., Jennings, N. B., Ahmed, A. A., Sood, A. K. & Lopez-Berestein, G. Paclitaxel sensitivity of ovarian cancer can be enhanced by knocking down pairs of kinases that regulate MAP4 phosphorylation and microtubule stability combinatorial siRNA therapy enhances paclitaxel sensitivity. Clin. Cancer Res. 24, 5072−5084 (2018). 59. Kim, K. S., Suzuki, K., Cho, H., Youn, Y. S. & Bae, Y. H. Oral nanoparticles exhibit specific high-efficiency intestinal uptake and lymphatic transport. ACS Nano 12, 8893−8900 (2018). 60. Holm, R., Müllertz, A. & Mu, H. Bile salts and their importance for drug absorption. Int. J. Pharm. 453, 44−55 (2013). 61. Trevaskis, N. L., Kaminskas, L. M. & Porter, C. J. From sewer to saviour—Targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 14, 781−803 (2015). 62. Welling, S. H., Hubálek, F., Jacobsen, J., Brayden, D. J., Rahbek, U. L. & Buckley, S. T. The role of citric acid in oral peptide and protein formulations: Relationship between calcium chelation and proteolysis inhibition. Eur. J. Pharm. Biopharm. 86, 544−551 (2014). 63. Cho, M., Scieszka, J. & Burton, P. Citric acid as an adjuvant for transepithelial transport. Int. J. Pharm. 52, 79−81 (1989). 64. Lin, P. Y., Chiu, Y. L., Huang, J. H., Chuang, E. Y., Mi, F. L., Lin, K. J., Juang, J. H., Sung, H. W. & Leong, K. W. Oral nonviral gene delivery for chronic protein replacement therapy. Adv. Sci. 5, 1701079 (2018). 65. Reuter, F., Bade, S., Hirst, T. R. & Frey, A. Bystander protein protects potential vaccine-targeting ligands against intestinal proteolysis. J. Control. Release 137, 98−103 (2009). 66. Huang, W., Chen, R., Peng, Y., Duan, F., Huang, Y., Guo, W., Chen, X. & Nie, L. In vivo quantitative photoacoustic diagnosis of gastric and intestinal dysfunctions with a broad pH-responsive sensor. ACS Nano 13, 9561−9570 (2019). 67. Li, J., Thamphiwatana, S., Liu, W., Esteban-Fernández de Ávila, B., Angsantikul, P., Sandraz, E., Wang, J., Xu, T., Soto, F. & Ramez, V. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano 10, 9536−9542 (2016). 68. Kang, J. H., Hwang, J. Y., Seo, J. W., Kim, H. S. & Shin, U. S. Small intestine-and colon-specific smart oral drug delivery system with controlled release characteristic. Mater. Sci. Eng. C Mater. Biol. Appl. 91, 247−254 (2018). 69. Pouton, C. W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci. 11, S93−S98 (2000). 70. Mäkinen, K., Loimas, S., Nuutinen, P., Eskelinen, M. & Alhava, E. The growth pattern and microvasculature of pancreatic tumours induced with cultured carcinoma cells. Br. J. Cancer 82, 900−904 (2000). 71. Hotz, B., Buhr, H. J. & Hotz, H. G. Intravital microscopic characterization of suramin effects in an orthotopic immunocompetent rat model of pancreatic cancer. J. Gastrointest. Surg. 12, 900−906 (2008). 72. Hotz, H. G., Reber, H. A., Hotz, B., Foitzik, T., Buhr, H. J., Cortina, G. & Hines, O. J. An improved clinical model of orthotopic pancreatic cancer in immunocompetent Lewis rats. Pancreas 22, 113−121 (2001). 73. Chen, P. M., Pan, W. Y., Wu, C. Y., Yeh, C. Y., Korupalli, C., Luo, P. K., Chou, C. J., Chia, W. T. & Sung, H. W. Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination. Biomaterials 230, 119629 (2020). 74. Bibby, M. Orthotopic models of cancer for preclinical drug evaluation: Advantages and disadvantages. Eur. J. Cancer 40, 852−857 (2004). 75. Attili-Qadri, S., Karra, N., Nemirovski, A., Schwob, O., Talmon, Y., Nassar, T. & Benita, S. Oral delivery system prolongs blood circulation of docetaxel nanocapsules via lymphatic absorption. Proc. Natl. Acad. Sci. U. S. A. 110, 17498−17503 (2013). 76. Niu, Z., Conejos-Sánchez, I., Griffin, B. T., O’Driscoll, C. M. & Alonso, M. J. Lipid-based nanocarriers for oral peptide delivery. Adv. Drug Del. Rev. 106, 337−354 (2016). 77. Apparaju, S. K., Gudelsky, G. A. & Desai, P. B. Pharmacokinetics of gemcitabine in tumor and non-tumor extracellular fluid of brain: An in vivo assessment in rats employing intracerebral microdialysis. Cancer Chemother. Pharmacol. 61, 223−229 (2008). 78. Bromberg, L. Polymeric micelles in oral chemotherapy. J. Control. Release 128, 99−112 (2008). 79. Schudel, A., Francis, D. M. & Thomas, S. N. Material design for lymph node drug delivery. Nat. Rev. Mater. 4, 415−428 (2019). 80. Feeney, O. M., Crum, M. F., McEvoy, C. L., Trevaskis, N. L., Williams, H. D., Pouton, C. W., Charman, W. N., Bergström, C. A. S. & Porter, C. J. H. 50 years of oral lipid-based formulations: Provenance, progress and future perspectives. Adv. Drug Del. Rev. 101, 167−194 (2016). 81. Mowers, E. E., Sharifi, M. N. & Macleod, K. F. Autophagy in cancer metastasis. Oncogene 36, 1619−1630 (2017). 82. Huang, C. C., Chia, W. T., Chung, M. F., Lin, K. J., Hsiao, C. W., Jin, C., Lim, W. H., Chen, C. C. & Sung, H. W. An implantable depot that can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy. J. Am. Chem. Soc. 138, 5222−5225 (2016). 83. Yano, S., Takehara, K., Miwa, S., Kishimoto, H., Tazawa, H., Urata, Y., Kagawa, S., Bouvet, M., Fujiwara, T. & Hoffman, R. M. In vivo isolation of a highly-aggressive variant of triple-negative human breast cancer MDA-MB-231 using serial orthotopic transplantation. Anticancer Res. 36, 3817 (2016). 84. Somers, K. D., Brown, R. R., Holterman, D. A., Yousefieh, N., Glass, W. F., Wright Jr, G. L., Schellhammer, P. F., Qian, J. & Ciavarra, R. P. Orthotopic treatment model of prostate cancer and metastasis in the immunocompetent mouse: Efficacy of flt3 ligand immunotherapy. Int. J. Cancer 107, 773−780 (2003). 85. Noguchi, M., Stamey, T. A., McNeal, J. E. & Yemoto, C. E. Assessment of morphometric measurements of prostate carcinoma volume. Cancer 89, 1056−1064 (2000). 86. Yeh, C. N., Lin, K. J., Hsiao, I. T., Yen, T. C., Chen, T. W., Jan, Y. Y., Chung, Y. H., Lin, C. F. & Chen, M. F. Animal PET for thioacetamide-induced rat cholangiocarcinoma: A novel and reliable platform. Mol. Imaging Biol. 10, 209−216 (2008). 87. Costa-Silva, B., Aiello, N. M., Ocean, A. J., Singh, S., Zhang, H., Thakur, B. K., Becker, A., Hoshino, A., Mark, M. T. & Molina, H. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816−826 (2015). 88. Zhao, Y., Chu, X., Chen, J., Wang, Y., Gao, S., Jiang, Y., Zhu, X., Tan, G., Zhao, W. & Yi, H. Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat. Commun. 7, 1−12 (2016). 89. Zhang, X., Xu, X., Chen, Y., Dou, Y., Zhou, X., Li, L., Li, C., An, H., Tao, H. & Hu, H. Bioinspired yeast microcapsules loaded with self-assembled nanotherapies for targeted treatment of cardiovascular disease. Mater. Today 20, 301−313 (2017). 90. Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R. & Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751−760 (2007). 91. Khdair, A., Hamad, I., Alkhatib, H., Bustanji, Y., Mohammad, M., Tayem, R. & Aiedeh, K. Modified-chitosan nanoparticles: Novel drug delivery systems improve oral bioavailability of doxorubicin. Eur. J. Pharm. Sci. 93, 38−44 (2016). 92. Barick, K., Nigam, S. & Bahadur, D. Nanoscale assembly of mesoporous ZnO: A potential drug carrier. J. Mater. Chem. 20, 6446−6452 (2010). 93. Goodridge, H. S., Reyes, C. N., Becker, C. A., Katsumoto, T. R., Ma, J., Wolf, A. J., Bose, N., Chan, A. S., Magee, A. S. & Danielson, M. E. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472, 471−475 (2011). 94. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399−416 (2017). 95. Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 11, 889−896 (2010). 96. Sung, Y. C., Jin, P. R., Chu, L. A., Hsu, F. F., Wang, M. R., Chang, C. C., Chiou, S. J., Qiu, J. T., Gao, D. Y. & Lin, C. C. Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat. Nanotechnol. 14, 1160−1169 (2019). 97. Cui, C., Chakraborty, K., Tang, X. A., Schoenfelt, K. Q., Hoffman, A., Blank, A., McBeth, B., Pulliam, N., Reardon, C. A. & Kulkarni, S. A. A lysosome-targeted DNA nanodevice selectively targets macrophages to attenuate tumours. Nat. Nanotechnol. 16, 1394−1402 (2021). 98. Duan, Z. & Luo, Y. Targeting macrophages in cancer immunotherapy. Signal Transduct. Target. Ther. 6, 1−21 (2021). 99. Wei, Z., Zhang, X., Yong, T., Bie, N., Zhan, G., Li, X., Liang, Q., Li, J., Yu, J. & Huang, G. Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles. Nat. Commun. 12, 1−20 (2021). 100. Chen, Q., Wang, C., Zhang, X., Chen, G., Hu, Q., Li, H., Wang, J., Wen, D., Zhang, Y. & Lu, Y. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89−97 (2019). 101. Patel, A. J., Willsmore, Z. N., Khan, N., Richter, A., Naidu, B., Drayson, M. T., Papa, S., Cope, A., Karagiannis, S. N. & Perucha, E. Regulatory B cell repertoire defects predispose lung cancer patients to immune-related toxicity following checkpoint blockade. Nat. Commun. 13, 1−16 (2022). 102. Soto, E. R. & Ostroff, G. R. Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA delivery. Bioconjug. Chem. 19, 840−848 (2008). 103. Zhai, H., Gunness, P. & Gidley, M. J. Barley β-glucan effects on emulsification and in vitro lipolysis of canola oil are modulated by molecular size, mixing method, and emulsifier type. Food Hydrocoll. 103, 105643 (2020). 104. Tang, L., Shi, J., Wang, X., Zhang, S., Wu, H., Sun, H. & Jiang, Z. Coordination polymer nanocapsules prepared using metal–organic framework templates for pH-responsive drug delivery. Nanotechnology 28, 275601 (2017). 105. Laginha, K. M., Verwoert, S., Charrois, G. J. & Allen, T. M. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin. Cancer Res. 11, 6944−6949 (2005). 106. Luzio, J. P., Pryor, P. R. & Bright, N. A. Lysosomes: Fusion and function. Nat. Rev. Mol. Cell Biol. 8, 622−632 (2007). 107. Sauer, U. G., Werle, K., Waindok, H., Hirth, S., Hachmoller, O. & Wohlleben, W. Critical choices in predicting stone wool biodurability: Lysosomal fluid compositions and binder effects. Chem. Res. Toxicol. 34, 780−792 (2021). 108. Zhitomirsky, B. & Assaraf, Y. G. Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis. Oncotarget 8, 45117 (2017). 109. Hu, M., Wang, Y., Liu, Z., Yu, Z., Guan, K., Liu, M., Wang, M., Tan, J. & Huang, L. Hepatic macrophages act as a central hub for relaxin-mediated alleviation of liver fibrosis. Nat. Nanotechnol. 16, 466−477 (2021). 110. Zhou, X., Liu, Y., Hu, M., Wang, M., Liu, X. & Huang, L. Relaxin gene delivery modulates macrophages to resolve cancer fibrosis and synergizes with immune checkpoint blockade therapy. Sci. Adv. 7, eabb6596 (2021). 111. Shields IV, C. W., Evans, M. A., Wang, L. L. W., Baugh, N., Iyer, S., Wu, D., Zhao, Z., Pusuluri, A., Ukidve, A. & Pan, D. C. Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6, eaaz6579 (2020). 112. Chauhan, V. P., Martin, J. D., Liu, H., Lacorre, D. A., Jain, S. R., Kozin, S. V., Stylianopoulos, T., Mousa, A. S., Han, X. & Adstamongkonkul, P. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 4, 1−11 (2013). 113. Sung, Y. C., Liu, Y. C., Chao, P. H., Chang, C. C., Jin, P. R., Lin, T. T., Lin, J. A., Cheng, H. T., Wang, J. & Lai, C. P. Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics 8, 894 (2018). 114. Li, X., Luo, H., Ye, Y., Chen, X., Zou, Y., Duan, J. & Xiang, D. β‑Glucan, a dectin‑1 ligand, promotes macrophage M1 polarization via NF‑κB/autophagy pathway. Int. J. Oncol. 54, 271−282 (2019). 115. Liu, M., Luo, F., Ding, C., Albeituni, S., Hu, X., Ma, Y., Cai, Y., McNally, L., Sanders, M. A. & Jain, D. Dectin-1 activation by a natural product β-glucan converts immunosuppressive macrophages into an M1-like phenotype. J. Immunol. 195, 5055−5065 (2015). 116. Lee, C., Verma, R., Byun, S., Jeun, E. J., Kim, G. C., Lee, S., Kang, H. J., Kim, C. J., Sharma, G. & Lahiri, A. Structural specificities of cell surface β-glucan polysaccharides determine commensal yeast mediated immuno-modulatory activities. Nat. Commun. 12, 1−16 (2021). 117. Xu, J., Ma, Q., Zhang, Y., Fei, Z., Sun, Y., Fan, Q., Liu, B., Bai, J., Yu, Y. & Chu, J. Yeast-derived nanoparticles remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat. Commun. 13, 1−15 (2022). 118. Chen, K. H., Miao, Y. B., Shang, C. Y., Huang, T. Y., Yu, Y. T., Yeh, C. N., Song, H. L., Chen, C. T., Mi, F. L. & Lin, K. J. A bubble bursting-mediated oral drug delivery system that enables concurrent delivery of lipophilic and hydrophilic chemotherapeutics for treating pancreatic tumors in rats. Biomaterials 255, 120157 (2020). 119. Russell, J. H. & Ley, T. J. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 20, 323 (2002). 120. Nielsen, S. R., Quaranta, V., Linford, A., Emeagi, P., Rainer, C., Santos, A., Ireland, L., Sakai, T., Sakai, K. & Kim, Y. S. Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat. Cell Biol. 18, 549−560 (2016). 121. Zhao, J., Xiao, Z., Li, T., Chen, H., Yuan, Y., Wang, Y. A., Hsiao, C. H., Chow, D. S., Overwijk, W. W. & Li, C. Stromal modulation reverses primary resistance to immune checkpoint blockade in pancreatic cancer. ACS Nano 12, 9881−9893 (2018). 122. Liu, X., Jiang, J., Liao, Y. P., Tang, I., Zheng, E., Qiu, W., Lin, M., Wang, X., Ji, Y. & Mei, K. C. Combination chemo‐immunotherapy for pancreatic cancer using the immunogenic effects of an irinotecan silicasome aanocarrier plus anti‐PD‐1. Adv. Sci. 8, 2002147 (2021). 123. Hao, X., Hu, X., Zhang, C., Chen, S., Li, Z., Yang, X., Liu, H., Jia, G., Liu, D. & Ge, K. Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite. ACS Nano 9, 9614−9625 (2015). 124. An, L., Hu, X. W., Zhang, S., Hu, X., Song, Z., Naz, A., Zi, Z., Wu, J., Li, C. & Zou, Y. UVRAG deficiency exacerbates doxorubicin-induced cardiotoxicity. Sci. Rep. 7, 1−12 (2017). 125. Zhou, X., Zhang, X., Han, S., Dou, Y., Liu, M., Zhang, L., Guo, J., Shi, Q., Gong, G. & Wang, R. Yeast microcapsule-mediated targeted delivery of diverse nanoparticles for imaging and therapy via the oral route. Nano Lett. 17, 1056−1064 (2017). 126. Kivelä, R., Gates, F. & Sontag-Strohm, T. Degradation of cereal beta-glucan by ascorbic acid induced oxygen radicals. J. Cereal Sci. 49, 1−3 (2009). 127. Fedorova, O., Petukhov, A., Daks, A., Shuvalov, O., Leonova, T., Vasileva, E., Aksenov, N., Melino, G. & Barlev, N. A. Orphan receptor NR4A3 is a novel target of p53 that contributes to apoptosis. Oncogene 38, 2108−2122 (2019).
|