帳號:guest(18.222.161.142)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝順來
作者(外文):Xie, Shun-Lai
論文名稱(中文):硝酸鉛水溶液應用於低毒性三步法製備鈣鈦礦薄膜之研究
論文名稱(外文):Applying Low-toxic 3-step Method for Fabricating Aqueous Lead Nitrate Based Perovskite Films
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):陳志銘
馮憲平
口試委員(外文):Chen, Chih-Ming
Feng, Shien-Ping
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032512
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:118
中文關鍵詞:鈣鈦礦硝酸鉛水溶液三步法製備鈣鈦礦
外文關鍵詞:PerovskiteAqueous Pb(NO3)2 solution3-step method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:82
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
有機無機混和型鈣鈦礦如甲胺碘化鉛和甲脒碘化鉛,因為擁有優異的光電性質,包括了在可見光波段有高消光係數、合適且可調整的能隙大小,以及長的載子傳遞長度,因此吸引了許多研究團隊研究,並且被廣泛應用在太陽能電池上。發展至此,鈣鈦礦太陽能電池的光電轉換效率已達24.2%。然而,在製備鈣鈦礦中,常用碘化鉛的二甲基甲醯胺溶液作為前驅物,但是二甲基甲醯胺卻具有高毒性而限制了其未來商用化的可能性。有鑑於此,本團隊過去成功發展出以硝酸鉛水溶液作為前驅物製備鈣鈦礦太陽能電池的技術,但是同時也發現硝酸鉛轉變成鈣鈦礦是兩步驟轉換,需要較長反應時間才可有高轉化率,然而反應時間過長而容易使鈣鈦礦產生過大晶粒與剝離的現象。為此,本研究創新了一製備鈣鈦礦的技術:三步法,即先利用碘-醇類溶液碘化硝酸鉛,再浸泡於碘甲胺/氯甲胺溶液得到鈣鈦礦。雖然步驟增加,卻可縮短反應時間並減少高毒性溶劑的使用。
在實驗結果上,浸泡碘液後,硝酸鉛從島狀分布轉變成片狀結構,且由X光繞射之分析確認其組成為碘化鉛,再將之浸泡於碘甲胺/氯甲胺溶液中即可轉變成鈣鈦礦。在碘液溶劑的部分,研究發現以異丁醇系統為最佳,效率達2.78%。經由第三步驟總濃度的調控後,碘甲胺和氯甲胺的重量比9:0.9為最佳條件,效率進一步提升至4.23%。在碘-氯比例的部分,以增加氯甲胺和減少碘甲胺的方式調控比例,避免第三步驟的溶液總濃度變化過大,加上三步法製備出的鈣鈦礦表面粗糙度高,所以降低轉速來得到較厚的電洞傳輸層,以減少金電極和鈣鈦礦的接觸機會,使效率再提升至8.49%。最後,優化反應時間,以浸泡1.5和0.5分鐘的條件為最佳,元件效率最高可達8.85%。
與標準系統(兩步法)比較,三步法所得之鈣鈦礦在結晶度、電子與電洞傳遞上均弱於標準系統,故短路電流和電壓上較低。此外,藉由二次離子質譜儀的檢測,可得知鈣鈦礦於多孔層內的填孔率不佳,進而影響載子的傳遞效率。由SEM的結果可觀察到,在鈣鈦礦的表面上因為有突出的晶粒生成,薄膜粗糙度是較高的,所以需要相對較厚的電洞傳輸層來避免金和鈣鈦礦的直接接觸,使元件效率降低。
Organic-inorganic hybrid perovskite, such as MAPbI3 and FAPbI3, has attracted the attention of many research groups due to its promising optoelectronic properties, including high extinction coefficient in the range of visible light, appropriate and tunable band gap, and long carrier transport length. It renders that perovskite has been widely used in solar cells. So far, the efficiency of perovskite solar cells (PSCs) has rapidly progressed to 24.2%. For fabricating perovskite films, PbI2 dissolved in DMF is the commonly used precursor for solution process. However, DMF inhibits the commercialization of PSCs due to its toxicity. As a result, our research group developed the technology to fabricate perovskite films by using the aqueous Pb(NO3)2 precursor, but converting Pb(NO3)2 to perovskite was 2-step process, so it took longer reaction time to convert into perovskite completely. However, it caused perovskite films were delaminated from the mesoporous layer. Also, it formed coarsened grains. Therefore, develop the new technology to form perovskite: 3-step method, i.e., iodizing Pb(NO3)2 first by iodine-alcohol solution, and then dipping into MAI/MACl solution to fabricate perovskite films. Although steps increased, it minimized the toxicity due to solvents and decreased reaction time.
From experiment results, the island-like Pb(NO3)2 morphology was transformed into the flake-like structure after dipping into iodine solution. From XRD results, Pb(NO3)2 can be converted into PbI2 and then further become perovskite by reacting with MAI/MACl solution. In the part of the solvent of the iodine, the best was i-butanol system, and the efficiency was 2.78%. In the part of controlling overall concentration of MAI/MACl solution, the appropriate ratio was 9:0.9 (w:w), and then the efficiency increased to 4.23%. In the part of adjusting the ratio of MAI and MACl, the adequate result was 8.1:2. Besides, the roughness of perovskite films fabricated by 3-step method was high, so it needed thicker hole-transport layer (HTL) to cover perovskite films. It can avoid direct contact between perovskite films and the gold electrode. So, the efficiency was improved to 8.49%. Finally, by adjusting reaction time, the best dipping condition was 1.5 and 0.5 minutes. The highest efficiency was 8.85%.
In comparison with standard process of our research group (2-step method), the crystallinity and carrier transport ability of perovskite films fabricated by 3-step method were lower. Thus, it decreased short-circuit current density and open-circuit voltage. Also, from SIMS resuls, the hole filling ratio of perovskite was not good in the mesoporous layer. It caused lower electron-transport efficiency. From SEM result, the roughness of perovskite films was higher, so it needed thicker HTL to decrease the connection between perovskite films and the gold electrode.
摘要...............................................................I
Abstract.........................................................III
總目錄.............................................................V
圖目錄...........................................................VII
表目錄............................................................XI
第一章 緒論.........................................................1
第二章 文獻回顧.....................................................6
2-1 鈣鈦礦太陽能電池(Perovskite solar cell).........................6
2-1.1 鈣鈦礦發現與特性介紹..........................................6
2-1.2 鈣鈦礦太陽能電池的起源和發展...................................9
2-1.3 鈣鈦礦太陽能電池運作原理......................................20
2-2 鈣鈦礦鉛前驅物介紹.............................................23
2-3 鈣鈦礦層之製備方式.............................................26
2-3.1 濕式製程製備鈣鈦礦薄膜.......................................26
2-3.2 乾式製程製備鈣鈦礦薄膜.......................................31
2-4 研究目的與動機.................................................34
第三章 研究方法與儀器分析...........................................36
3-1 實驗儀器和相關分析設備.........................................36
3-2 實驗藥品和相關材料.............................................37
3-3 實驗步驟與方法.................................................39
3-3.1 HTM, Spiro-OMeTAD溶液製備...................................39
3-3.2 碘甲胺CH3NH3I, MAI之製備.....................................40
3-3.3 基板至多孔層之製備...........................................41
3-3.4 碘液與鈣鈦礦太陽能電池之製備..................................42
3-3.5 標準兩步法鈣鈦礦薄膜製備流程..................................44
3-4 儀器分析、理論與分析原理........................................46
3-4.1 X光繞射儀(X-ray diffractometer, XRD)........................46
3-4.2 紫外光-可見光光譜儀(UV-Vis spectrometer).....................49
3-4.3 傅立葉轉換紅外線光譜儀(Fourier-transform infrared spectroscopy (FTIR))...........................................................53
3-4.4 掃描式電子顯微鏡(Scanning electron microscopy, SEM)..........56
3-4.5 太陽光模擬器(Solar simulator)與電流密度-電壓曲線..............58
3-4.6 光致放光光譜(Photoluminescence spectra, PL)..................64
3-4.7 飛行時間二次離子質譜儀(Time-of-flight secondary ion mass spectrometer, TOF-SIMS)...........................................67
3-4.8 能量色散X-射線光譜(Energy-dispersive X-ray spectroscopy, EDX) ..................................................................72
第四章 實驗結果與討論..............................................74
4-1 水相製備碘化鉛薄膜與有機碘液之分析..............................74
4-2 三步法所得碘化鉛與鈣鈦礦薄膜之性質分析...........................80
4-3 浸泡條件之優化對元件效率之影響..................................92
4-4 三步法系統之問題以及與標準系統之比較...........................101
第五章 結論.......................................................107
第六章 未來工作...................................................109
第七章 引用文獻與資料.............................................110
[1] NASA. (2016). The NASA Earth's Energy Budget Poster (7 ed.). Available: https://science-edu.larc.nasa.gov/energy_budget/
[2] "A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power," Journal of Applied Physics, vol. 25, pp. 676-677, 1954.
[3] NREL. (2019). Best Research-Cell Efficiency Chart. Available: https://www.nrel.gov/pv/cell-efficiency.html
[4] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009.
[5] I. Borriello, G. Cantele, and D. Ninno, "Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides," Physical Review B, vol. 77, p. 235214, 2008.
[6] F. Kruijen. Perovskite. Available: https://www.mindat.org/photo-243051.html
[7] H.-S. Kim, S. H. Im, and N.-G. Park, "Organolead Halide Perovskite: New Horizons in Solar Cell Research," The Journal of Physical Chemistry C, vol. 118, pp. 5615-5625, 2014.
[8] J. Hafner, "A joint effort with lasting impact," Nature Materials, vol. 9, p. 690, 2010.
[9] N. Elumalai, M. Mahmud, D. Wang, and A. Uddin, "Perovskite Solar Cells: Progress and Advancements," Energies, vol. 9, p. 861, 2016.
[10] M. A. Green and S. P. Bremner, "Energy conversion approaches and materials for high-efficiency photovoltaics," Nature Materials, vol. 16, p. 23, 2016.
[11] Z. Song, S. C. Watthage, A. B. Phillips, and M. J. Heben, "Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications," p. 23, 2016.
[12] C. Li, S. Pang, H. Xu, and G. Cui, "Methylamine Gas Based Synthesis and Healing Process Toward Upscaling of Perovskite Solar Cells: Progress and Perspective," Solar RRL, vol. 1, p. 1700076, 2017.
[13] T.-Y. Hsieh, T.-S. Su, M. Ikegami, T.-C. Wei, and T. Miyasaka, "Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition," Materials Today Energy, 2018.
[14] H. H. Ma, M. Imran, Z. Dang, and Z. Hu, "Growth of Metal Halide Perovskite, from Nanocrystal to Micron-Scale Crystal: A Review," Crystals, vol. 8, p. 182, 2018.
[15] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, pp. 4088-4093, 2011.
[16] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, et al., "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Scientific Reports, vol. 2, p. 591, 2012.
[17] Spiro-MeOTAD. Available: https://www.sigmaaldrich.com/catalog/product/aldrich/792071?lang=en®ion=TW
[18] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, et al., "Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells," Journal of the American Chemical Society, vol. 134, pp. 17396-17399, 2012.
[19] F. Hao, C. C. Stoumpos, Z. Liu, R. P. H. Chang, and M. G. Kanatzidis, "Controllable Perovskite Crystallization at a Gas–Solid Interface for Hole Conductor-Free Solar Cells with Steady Power Conversion Efficiency over 10%," Journal of the American Chemical Society, vol. 136, pp. 16411-16419, 2014.
[20] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites," Science, vol. 338, pp. 643-647, 2012.
[21] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, "Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells," Advanced Functional Materials, vol. 24, pp. 151-157, 2014.
[22] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, p. 395, 2013.
[23] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, et al., "Interface engineering of highly efficient perovskite solar cells," Science, vol. 345, pp. 542-546, 2014.
[24] J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, et al., "CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells," Advanced Materials, vol. 25, pp. 3727-3732, 2013.
[25] 洪承佑, "液態鈣鈦礦太陽能電池效能衰減及腐蝕現象之研究," 碩士, 化學工程學系, 國立清華大學, 新竹市, 2015.
[26] Q. Dong, Y. Yuan, Y. Shao, Y. Fang, Q. Wang, and J. Huang, "Abnormal crystal growth in CH3NH3PbI3−xClx using a multi-cycle solution coating process," Energy & Environmental Science, vol. 8, pp. 2464-2470, 2015.
[27] J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, et al., "Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition," Advanced Materials, vol. 27, pp. 4013-4019, 2015.
[28] I. Mesquita, L. Andrade, and A. Mendes, "Perovskite solar cells: Materials, configurations and stability," Renewable and Sustainable Energy Reviews, vol. 82, pp. 2471-2489, 2018.
[29] D. M. Jang, K. Park, D. H. Kim, J. Park, F. Shojaei, H. S. Kang, et al., "Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning," Nano Letters, vol. 15, pp. 5191-5199, 2015.
[30] Y. Tidhar, E. Edri, H. Weissman, D. Zohar, G. Hodes, D. Cahen, et al., "Crystallization of Methyl Ammonium Lead Halide Perovskites: Implications for Photovoltaic Applications," Journal of the American Chemical Society, vol. 136, pp. 13249-13256, 2014.
[31] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, et al., "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber," Science, vol. 342, pp. 341-344, 2013.
[32] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, "Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells," Nano Letters, vol. 13, pp. 1764-1769, 2013.
[33] C. Quarti, E. Mosconi, J. M. Ball, V. D'Innocenzo, C. Tao, S. Pathak, et al., "Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells," Energy & Environmental Science, vol. 9, pp. 155-163, 2016.
[34] 鍾怡柔, "無鉛鈣鈦礦太陽能電池之先導研究," 碩士, 化學工程學系, 國立清華大學, 新竹市, 2016.
[35] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, et al., "Lead-free organic–inorganic tin halide perovskites for photovoltaic applications," Energy & Environmental Science, vol. 7, pp. 3061-3068, 2014.
[36] S. Shao, J. Liu, G. Portale, H.-H. Fang, G. R. Blake, G. H. ten Brink, et al., "Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency," Advanced Energy Materials, vol. 8, p. 1702019, 2018.
[37] E. Jokar, C.-H. Chien, C.-M. Tsai, A. Fathi, and E. W.-G. Diau, "Robust Tin-Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%," Advanced Materials, vol. 31, p. 1804835, 2019.
[38] T.-B. Song, T. Yokoyama, C. C. Stoumpos, J. Logsdon, D. H. Cao, M. R. Wasielewski, et al., "Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells," Journal of the American Chemical Society, vol. 139, pp. 836-842, 2017.
[39] T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, et al., "Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells," The Journal of Physical Chemistry C, vol. 118, pp. 16458-16462, 2014.
[40] P. Wang, J. Guan, D. T. K. Galeschuk, Y. Yao, C. F. He, S. Jiang, et al., "Pressure-Induced Polymorphic, Optical, and Electronic Transitions of Formamidinium Lead Iodide Perovskite," The Journal of Physical Chemistry Letters, vol. 8, pp. 2119-2125, 2017.
[41] Q. Han, S.-H. Bae, P. Sun, Y.-T. Hsieh, Y. Yang, Y. S. Rim, et al., "Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties," Advanced Materials, vol. 28, pp. 2253-2258, 2016.
[42] A. Binek, F. C. Hanusch, P. Docampo, and T. Bein, "Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide," The Journal of Physical Chemistry Letters, vol. 6, pp. 1249-1253, 2015.
[43] N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, et al., "Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting," Angewandte Chemie International Edition, vol. 53, pp. 3151-3157, 2014.
[44] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells," Energy & Environmental Science, vol. 7, pp. 982-988, 2014.
[45] Z. Zhu, C.-C. Chueh, F. Lin, and A. K.-Y. Jen, "Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer," Advanced Science, vol. 3, p. 1600027, 2016.
[46] M.-H. Jung, S. H. Rhim, and D. Moon, "TiO2/RbPbI3 halide perovskite solar cells," Solar Energy Materials and Solar Cells, vol. 172, pp. 44-54, 2017.
[47] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, et al., "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy & Environmental Science, vol. 9, pp. 1989-1997, 2016.
[48] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, et al., "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells," Science, vol. 356, pp. 1376-1379, 2017.
[49] J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, "Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency," Energy & Environmental Science, vol. 8, pp. 1602-1608, 2015.
[50] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, "Lead-free solid-state organic–inorganic halide perovskite solar cells," Nature Photonics, vol. 8, p. 489, 2014.
[51] C.-M. Tsai, N. Mohanta, C.-Y. Wang, Y.-P. Lin, Y.-W. Yang, C.-L. Wang, et al., "Formation of Stable Tin Perovskites Co-crystallized with Three Halides for Carbon-Based Mesoscopic Lead-Free Perovskite Solar Cells," Angewandte Chemie International Edition, vol. 56, pp. 13819-13823, 2017.
[52] T.-Y. Hsieh, T.-C. Wei, K.-L. Wu, M. Ikegami, and T. Miyasaka, "Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor," Chemical Communications, vol. 51, pp. 13294-13297, 2015.
[53] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature Materials, vol. 13, p. 897, 2014.
[54] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, et al., "A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells," Angewandte Chemie International Edition, vol. 53, pp. 9898-9903, 2014.
[55] N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, "Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide," Journal of the American Chemical Society, vol. 137, pp. 8696-8699, 2015.
[56] D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, Shaik M. Zakeeruddin, et al., "Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%," Nature Energy, vol. 1, p. 16142, 2016.
[57] E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, et al., "Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)," Nature, vol. 567, pp. 511-515, 2019.
[58] M. A. Green, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie, "Solar cell efficiency tables (version 54)," Progress in Photovoltaics: Research and Applications, vol. 27, pp. 565-575, 2019.
[59] Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, and J. Huang, "Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers," Energy & Environmental Science, vol. 8, pp. 1544-1550, 2015.
[60] S. Das, B. Yang, G. Gu, P. C. Joshi, I. N. Ivanov, C. M. Rouleau, et al., "High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing," ACS Photonics, vol. 2, pp. 680-686, 2015.
[61] K. Hwang, Y.-S. Jung, Y.-J. Heo, F. H. Scholes, S. E. Watkins, J. Subbiah, et al., "Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells," Advanced Materials, vol. 27, pp. 1241-1247, 2015.
[62] S.-G. Li, K.-J. Jiang, M.-J. Su, X.-P. Cui, J.-H. Huang, Q.-Q. Zhang, et al., "Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells," Journal of Materials Chemistry A, vol. 3, pp. 9092-9097, 2015.
[63] K. Liang, D. B. Mitzi, and M. T. Prikas, "Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique," Chemistry of Materials, vol. 10, pp. 403-411, 1998.
[64] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells," Nature Nanotechnology, vol. 9, p. 927, 2014.
[65] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, p. 316, 2013.
[66] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, et al., "Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process," Journal of the American Chemical Society, vol. 136, pp. 622-625, 2014.
[67] J. Schlipf, P. Docampo, C. J. Schaffer, V. Körstgens, L. Bießmann, F. Hanusch, et al., "A Closer Look into Two-Step Perovskite Conversion with X-ray Scattering," The Journal of Physical Chemistry Letters, vol. 6, pp. 1265-1269, 2015.
[68] Y. Zhou, M. Yang, A. L. Vasiliev, H. F. Garces, Y. Zhao, D. Wang, et al., "Growth control of compact CH3NH3PbI3 thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells," Journal of Materials Chemistry A, vol. 3, pp. 9249-9256, 2015.
[69] T.-Y. Hsieh, C.-K. Huang, T.-S. Su, C.-Y. Hong, and T.-C. Wei, "Crystal Growth and Dissolution of Methylammonium Lead Iodide Perovskite in Sequential Deposition: Correlation between Morphology Evolution and Photovoltaic Performance," ACS Applied Materials & Interfaces, vol. 9, pp. 8623-8633, 2017.
[70] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, et al., "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," Science, vol. 348, pp. 1234-1237, 2015.
[71] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, et al., "Solar cell efficiency tables (Version 53)," Progress in Photovoltaics: Research and Applications, vol. 27, pp. 3-12, 2019.
[72] Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, et al., "Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%," Advanced Materials, vol. 29, p. 1703852, 2017.
[73] G. Balaji, P. H. Joshi, H. A. Abbas, L. Zhang, R. Kottokkaran, M. Samiee, et al., "CH3NH3PbI3 from non-iodide lead salts for perovskite solar cells via the formation of PbI2," Physical Chemistry Chemical Physics, vol. 17, pp. 10369-10372, 2015.
[74] Y. Peng, G. Jing, and T. Cui, "A hybrid physical–chemical deposition process at ultra-low temperatures for high-performance perovskite solar cells," Journal of Materials Chemistry A, vol. 3, pp. 12436-12442, 2015.
[75] G. Tong, X. Geng, Y. Yu, L. Yu, J. Xu, Y. Jiang, et al., "Rapid, stable and self-powered perovskite detectors via a fast chemical vapor deposition process," RSC Advances, vol. 7, pp. 18224-18230, 2017.
[76] L. Xiao, J. Xu, J. Luan, B. Zhang, Z. a. Tan, J. Yao, et al., "Achieving mixed halide perovskite via halogen exchange during vapor-assisted solution process for efficient and stable perovskite solar cells," Organic Electronics, vol. 50, pp. 33-42, 2017.
[77] J. Chen, J. Xu, L. Xiao, B. Zhang, S. Dai, and J. Yao, "Mixed-Organic-Cation (FA)x(MA)1–xPbI3 Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process," ACS Applied Materials & Interfaces, vol. 9, pp. 2449-2458, 2017.
[78] G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, "Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells," Journal of Materials Chemistry A, vol. 2, pp. 705-710, 2014.
[79] H. Zhou, Q. Chen, and Y. Yang, "Vapor-assisted solution process for perovskite materials and solar cells," MRS Bulletin, vol. 40, pp. 667-673, 2015.
[80] M.-H. Li, H.-H. Yeh, Y.-H. Chiang, U.-S. Jeng, C.-J. Su, H.-W. Shiu, et al., "Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low-Pressure Vapor-Assisted Solution Process," Advanced Materials, vol. 30, p. 1801401, 2018.
[81] 蘇子森, "定電流陽極沉積法製備二氧化鈦薄膜及其應用於鈣鈦礦太陽能電池阻隔層之研究," 碩士, 化學工程學系, 國立清華大學, 新竹市, 2015.
[82] T. IDA. (2008). Instrumental function of a Bragg-Brentano diffractometer. Available: http://www.crl.nitech.ac.jp/~ida/research/introduction/instr/
[83] P. Y. Bruice, Organic Chemistry, 5th Edition: Pearson, 2007.
[84] D. C. Harris, "Quantitative Chemical Analysis-photoluminescence," 7th ed. New York: W. H. Freeman and Company, 2006.
[85] 清華大學貴重儀器中心, "飛行時間二次離子質譜儀(TOF-SIMS)," ed.
[86] P. J.-C. Hwang, 二次離子質譜術原理示意圖, Ed., ed. http://mse.nthu.edu.tw/~jch/surface/report/873458/figure/1.html.
[87] ION-TOF, TOF-SIMS, Ed., ed. https://www.iontof.com/download/IONTOF_TOF-SIMS_5_Brochure.pdf.
[88] "Electron Interaction with Matter," ed.
[89] J. M. Gardner, M. Abrahamsson, B. H. Farnum, and G. J. Meyer, "Visible Light Generation of Iodine Atoms and I−I Bonds: Sensitized I− Oxidation and I3− Photodissociation," Journal of the American Chemical Society, vol. 131, pp. 16206-16214, 2009.
[90] S. V. Kireev and S. L. Shnyrev, "Study of molecular iodine, iodate ions, iodide ions, and triiodide ions solutions absorption in the UV and visible light spectral bands," Laser Physics, vol. 25, p. 075602, 2015.
[91] A. Manglik, S. K. Sharma, and V. P. Kudesia, "Kinetics of oxidation of isopropyl alcohol by aóueous iodine," Reaction Kinetics and Catalysis Letters, vol. 15, pp. 467-473, 1981.
[92] J. Wang, D. Lin, T. Zhang, M. Long, T. Shi, K. Chen, et al., "Thermal and illumination effects on a PbI2 nanoplate and its transformation to CH3NH3PbI3 perovskite," CrystEngComm, vol. 21, pp. 736-740, 2019.
[93] Y. Zhao, H. Tan, H. Yuan, Z. Yang, J. Z. Fan, J. Kim, et al., "Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells," Nature Communications, vol. 9, p. 1607, 2018.
[94] S. Y. Leblebici, L. Leppert, Y. Li, S. E. Reyes-Lillo, S. Wickenburg, E. Wong, et al., "Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite," Nature Energy, vol. 1, p. 16093, 2016.
[95] N. Cho, F. Li, B. Turedi, L. Sinatra, S. P. Sarmah, M. R. Parida, et al., "Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films," Nature Communications, vol. 7, p. 13407, 2016.
[96] J. Choi, S. Song, M. T. Hörantner, H. J. Snaith, and T. Park, "Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells," ACS Nano, vol. 10, pp. 6029-6036, 2016.
[97] Z. Liu, Q. Chen, Z. Hong, H. Zhou, X. Xu, N. De Marco, et al., "Low-Temperature TiOx Compact Layer for Planar Heterojunction Perovskite Solar Cells," ACS Applied Materials & Interfaces, vol. 8, pp. 11076-11083, 2016.
[98] W. C. Lin, A. Kovalsky, Y. C. Wang, L. L. Wang, S. Goldberg, W. L. Kao, et al., "Interpenetration of CH3NH3PbI3 and TiO2 improves perovskite solar cells while TiO2 expansion leads to degradation," Physical Chemistry Chemical Physics, vol. 19, pp. 21407-21413, 2017.
[99] T. Zhang, X. Meng, Y. Bai, S. Xiao, C. Hu, Y. Yang, et al., "Profiling the organic cation-dependent degradation of organolead halide perovskite solar cells," Journal of Materials Chemistry A, vol. 5, pp. 1103-1111, 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *