|
1. 胡啟章, 電化學原理與方法. 2002, 五南圖書出版股份有限公司. 2. Nomoto, S., et al., Advanced capacitors and their application. Journal of power sources, 2001. 97: p. 807-811. 3. Zhang, L.L. and X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009. 38(9): p. 2520-2531. 4. Faulkner, A.J.B.a.L.R., Electrochemical Methods: Fundamentals and applications, 2nd ed. 2001, New York: John Wiley & Sons Inc. 5. Oren, Y., Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination, 2008. 228(1): p. 10-29. 6. Anderson, M.A., A.L. Cudero, and J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 2010. 55(12): p. 3845-3856. 7. Porada, S., Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. M., Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 2013. 58(8): p. 1388-1442. 8. Johnson, A.M. and J. Newman, Desalting by Means of Porous Carbon Electrodes. Journal of The Electrochemical Society, 1971. 118(3): p. 510-517. 9. Biesheuvel, P.M. and A. van der Wal, Membrane capacitive deionization. Journal of Membrane Science, 2010. 346(2): p. 256-262. 10. Li, H. and L. Zou, Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination. Desalination, 2011. 275(1): p. 62-66. 11. Min, B.H., J.-H. Choi, and K.Y. Jung, Improvement of capacitive deionization performance via using a Tiron-grafted TiO2 nanoparticle layer on porous carbon electrode. Korean Journal of Chemical Engineering, 2018. 35(1): p. 272-282. 12. Liu, Y., et al., Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes. Electrochimica Acta, 2014. 130: p. 619-624. 13. Gao, X., et al., Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior. Energy & Environmental Science, 2015. 8(3): p. 897-909. 14. Wu, T., et al., Highly Stable Hybrid Capacitive Deionization with a MnO2 Anode and a Positively Charged Cathode. Environmental Science & Technology Letters, 2018. 5(2): p. 98-102. 15. Kang, J., et al., Comparison of salt adsorption capacity and energy consumption between constant current and constant voltage operation in capacitive deionization. Desalination, 2014. 352(Supplement C): p. 52-57. 16. He, D., et al., Faradaic Reactions in Water Desalination by Batch-Mode Capacitive Deionization. Environmental Science & Technology Letters, 2016. 3(5): p. 222-226. 17. Mossad, M. and L. Zou, A study of the capacitive deionisation performance under various operational conditions. Journal of Hazardous Materials, 2012. 213-214: p. 491-497. 18. Yeh, C.-L., et al., Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination, 2015. 367: p. 60-68. 19. Suss, M., et al., Water desalination via capacitive deionization: what is it and what can we expect from it? Energy & Environmental Science, 2015. 8(8): p. 2296-2319. 20. Remillard, E.M., et al., A direct comparison of flow-by and flow-through capacitive deionization. Desalination, 2018. 444: p. 169-177. 21. Pasta, M., et al., A Desalination Battery. Nano Letters, 2012. 12(2): p. 839-843. 22. Jeon, S.-i., et al., Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy & Environmental Science, 2013. 6(5): p. 1471-1475. 23. Farmer, J.C., et al., Capacitive Deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes. Journal of The Electrochemical Society, 1996. 143(1): p. 159-169. 24. Xu, P., et al., Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Research, 2008. 42(10): p. 2605-2617. 25. Aslan, M., et al., Improved capacitive deionization performance of mixed hydrophobic/hydrophilic activated carbon electrodes. Journal of Physics: Condensed Matter, 2016. 28(11): p. 114003. 26. Duan, F., et al., Desalination stability of capacitive deionization using ordered mesoporous carbon: Effect of oxygen-containing surface groups and pore properties. Desalination, 2015. 376: p. 17-24. 27. Wang, L., et al., Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. Journal of Materials Chemistry, 2011. 21(45): p. 18295-18299. 28. Yang, Z.Y., et al., Sponge‐templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Advanced Functional Materials, 2014. 24(25): p. 3917-3925. 29. Zhang, L., et al., Cocoon derived nitrogen enriched activated carbon fiber networks for capacitive deionization. Journal of Electroanalytical Chemistry, 2017. 804: p. 179-184. 30. Cohen, I., et al., Enhanced Charge Efficiency in Capacitive Deionization Achieved by Surface-Treated Electrodes and by Means of a Third Electrode. The Journal of Physical Chemistry C, 2011. 115(40): p. 19856-19863. 31. Lu, D., W. Cai, and Y. Wang, Optimization of the voltage window for long-term capacitive deionization stability. Desalination, 2017. 424: p. 53-61. 32. Xie, Z., et al., Polydopamine Modified Activated Carbon for Capacitive Desalination. Journal of The Electrochemical Society, 2017. 164(12): p. A2636-A2643. 33. Huang, W., et al., Desalination by capacitive deionization process using nitric acid-modified activated carbon as the electrodes. Desalination, 2014. 340: p. 67-72. 34. Lee, B., et al., Enhanced Capacitive Deionization by Dispersion of CNTs in Activated Carbon Electrode. ACS Sustainable Chemistry & Engineering, 2018. 6(2): p. 1572-1579. 35. Alencherry, T., et al., Effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization. Desalination, 2017. 415: p. 14-19. 36. Yan, T., et al., Ion-selective asymmetric carbon electrodes for enhanced capacitive deionization. RSC Advances, 2018. 8(5): p. 2490-2497. 37. Ismagilov, Z.R., et al., Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon, 2009. 47(8): p. 1922-1929. 38. Chen, T., et al., Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries. Dalton Transactions, 2014. 43(40): p. 14931-14935. 39. Li, Y., et al., Design of nitrogen-doped cluster-like porous carbons with hierarchical hollow nanoarchitecture and their enhanced performance in capacitive deionization. Desalination, 2018. 430: p. 45-55. 40. Wen, Z., et al., Crumpled nitrogen‐doped graphene nanosheets with ultrahigh pore volume for high‐performance supercapacitor. Advanced Materials, 2012. 24(41): p. 5610-5616. 41. Chen, L.-F., et al., Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors. ACS Nano, 2012. 6(8): p. 7092-7102. 42. Liu, Y., et al., Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization. Electrochimica Acta, 2015. 158: p. 403-409. 43. Xu, X., et al., Enhanced capacitive deionization performance of graphene by nitrogen doping. Journal of Colloid and Interface Science, 2015. 445: p. 143-150. 44. Liu, Y., et al., Nitrogen-doped carbon nanorods with excellent capacitive deionization ability. Journal of Materials Chemistry A, 2015. 3(33): p. 17304-17311. 45. Li, Y., et al., High performance capacitive deionization using modified ZIF-8-derived, N-doped porous carbon with improved conductivity. Nanoscale, 2018. 10(31): p. 14852-14859. 46. Zhao, S., et al., High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization. Applied Surface Science, 2016. 369: p. 460-469. 47. Porada, S., et al., Capacitive Deionization using Biomass‐based Microporous Salt‐Templated Heteroatom‐Doped Carbons. ChemSusChem, 2015. 8(11): p. 1867-1874. 48. Seredych, M., et al., Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon, 2008. 46(11): p. 1475-1488. 49. Yasin, A.S., et al., Fabrication of N-doped &SnO2-incorporated activated carbon to enhance desalination and bio-decontamination performance for capacitive deionization. Journal of Alloys and Compounds, 2017. 729: p. 764-775. 50. Liu, N.-L., et al., ZIF-8 Derived, Nitrogen-Doped Porous Electrodes of Carbon Polyhedron Particles for High-Performance Electrosorption of Salt Ions. Scientific Reports, 2016. 6: p. 28847.
|