帳號:guest(3.15.237.172)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴璟鋒
作者(外文):Lai, Ching-Feng
論文名稱(中文):帶有米氏酸官能基之多面體矽氧烷寡聚物之合成與應用研究
論文名稱(外文):Synthesis and application of Meldrum's acid functionalized polyhedral oligomeric silsesquioxanes
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying-Ling
口試委員(中文):鄭如忠
蔡敬誠
口試委員(外文):Jeng, Ru-Jong
Tsai, Jing-cherng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032507
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:96
中文關鍵詞:米氏酸多面體矽氧烷寡聚物巨型分子POSS複合薄膜
外文關鍵詞:Meldrum's acidpolyhedral oligomeric silsesquioxanegiant moleculePOSS composite membrane
相關次數:
  • 推薦推薦:0
  • 點閱點閱:251
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以具有米氏酸官能基之多面體矽氧烷寡聚物(POSS)之合成與應用為主軸。第一階段利用Corner capping縮合反應合成帶有單一氯苯官能基之前驅物POSS-Ph-Cl 並利用FT-IR、1H-NMR、FD-MS、DSC證實其結構及性質。
第二階段將製備所得POSS-Ph-Cl作為反應物分別與米氏酸(MA)、具苯基米氏酸衍生物(MA-P)進行親核取代反應合成出帶有兩POSS取代基單體MA-D-POSS與單側POSS取代基單體MAP-POSS,後續利用FT-IR、1H-NMR、13C-NMR、FD-MS、DSC、TGA證實結構及性質分析。
第三階段為兩單體之後續應用,以米氏酸熱裂解產生之烯酮官能基作為基礎分為兩研究方向,第一部份利用烯酮官能基之自身二聚體反應及與4,4'-dihydroxybiphenyl的親核加成反應分別合成出帶有特定結構之巨型分子D-MA-D-POSS、D-MAP-POSS、L-MAP-POSS,後續利用FT-IR、13C-NMR、FD-MS、DSC、TGA進行各項鑑定,其中D-MA-D-POSS與D-MAP-POSS因無法溶解於各種有機溶劑中而無法確切證實其結構,但透過對於L-MAP-POSS之結構鑑定與性質分析仍可成功證實米氏酸衍生之高反應性烯酮官能基可用於奈米巨型分子之合成。第二部分將MAP-POSS作為添加劑,利用溶液成膜法製備PBz-oda/MAP-POSS複合薄膜並藉由烯酮官能基與PBz-oda開環交聯反應產生之酚基形成反應鍵結以導入POSS於PBz-oda材料之中,然而利用SEM所得到的細微結構觀察結果,可發現儘管利用米氏酸結構對POSS進行官能基改質,於PBz-oda高分子材料中仍可發現分布不均的現象,不過在熱穩定性方面則發揮了減緩裂解速率的作用,而POSS堅硬的籠狀結構也達到了顯著提升機械強度的效果。
This study focuses on the synthesis and application of Meldrum’s acid substituted POSS. In the first stage, mono phenyl chloride substituted POSS monomer, POSS-Ph-Cl is synthesized by corner capping condensation. By means of FT-IR, 1H-NMR, FD-MS and DSC, its structure and property are confirmed.
In the second stage, pre-prepared POSS-Ph-Cl reacts with Meldrum’s acid(MA) and phenyl substituted Meldrum’s acid(MA-P) separately to synthesize bi-POSS substituted Meldrum’s acid(MA-D-POSS) and mono-POSS substituted Meldrum’s acid(MAP-POSS). By means of FT-IR, 1H-NMR, 13C-NMR, FD-MS, DSC and TGA, their structures and properties are confirmed.
In the third stage, the study focus on the application of MA-D-POSS and MAP-POSS on the basis of the heat induced Meldrum’s acid derivative, ketene. This stage has two parts. In the first part, ketene derivatives of MA-D-POSS and MAP-POSS undergo [2+2]dimerization or react with nucleophilic hydroxyl agent of 4,4’-dihydroxyphenyl to obtain D-MA-D-POSS, D-MAP-POSS and L-MAP-POSS. Although the structures of D-MA-D-POSS and D-MAP-POSS aren’t attested exactly due to their poor solubility, successful analysis of L-MAP-POSS still confirm the feasibility of synthesis of nano giant molecule with highly reactive ketene. In the second part, PBz-oda/MAP-POSS composite membranes with different POSS content are prepared via solution method. During the crosslinking process, POSS is introduced into PBz-oda polymer with linkage formed from the reaction between ketene and PBz-oda ring-opening phenol byproduct. With the existence of POSS particle, the composite membranes show elevated performance in enhancing mechanical strength and retarding heat induced decomposition. However, the SEM results of prepared composite membrane show that the partial aggregatioin of MA-POSS still occur.
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 多面體矽氧烷寡聚物(POSS)之簡介 2
1-3米氏酸之簡介 11
1-4 研究目的 18
第二章 文獻回顧 19
2-1官能基改質POSS於複合材料之應用 19
2-1-1 物理性共混材料之性質與應用 19
2-1-2 具反應鍵結複合材料之性質與應用 25
2-2 具POSS結構巨型分子之構裝現象 31
2-3 米氏酸衍生物於改質之應用 35
第三章 實驗方法 39
3-1 實驗藥品 39
3-2 儀器設備 41
3-3 實驗流程圖 42
3-4 前驅物合成 43
3-4-1 MA-P合成60 43
3-4-2 POSS-Ph-Cl合成73 44
3-5 米氏酸改質POSS合成 45
3-5-1 MAP-POSS合成 45
3-5-2 MA-D-POSS合成 45
3-6 巨型分子製備 46
3-6-1透過烯酮二聚合反應製備 46
3-6-2透過烯酮之親合加成反應製備 46
3-7 PBz-oda高分子複合薄膜製備 47
第四章 結果與討論 48
4-1 前驅物鑑定 48
4-1-1 MA-P之鑑定 48
4-1-2 POSS-Ph-Cl之鑑定 51
4-2 米氏酸改質POSS鑑定 55
4-2-1 MAP-POSS鑑定 55
4-2-2 MA-D-POSS鑑定 61
4-3 Giant Molecule之鑑定 68
4-3-1 D-MAP-POSS之鑑定與分析 68
4-3-2 D-MA-D-POSS之鑑定與分析 71
4-3-3 L-MAP-POSS之鑑定與分析 75
4-4 PBz-oda/MAP-POSS薄膜之鑑定及性質分析 81
第五章 結論 86
第六章 參考文獻 87

1. Baney, R. H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Silsesquioxanes. Chem Rev 1995, 95 (5), 1409-1430.
2. Kare, L. Arkiv for Kemi. 1960, 16, 203.
3. Meads, J. A.; Kipping, F. S. Organic derivatives of silicon Part XXIII on the so-called siliconic acids. J Chem Soc 1915, 107, 459-468.
4. Li, G.; Wang, L.; Ni, H.; Pittman, C. U. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review. Journal of Inorganic and Organometallic Polymers 2001, 11 (3), 123-154.
5. Frye, C. L.; Collins, W. T. Oligomeric silsequioxanes, (HSiO3/2)n. J. Am. Chem. Soc. 1970, 92 (19), 5586-5588.
6. Sprung, M. M.; Guenther, F. O. The partial hydrolysis of methyltriethoxysilane. J. Am. Chem. Soc. 1955, 77 (15), 3990-3996.
7. Barry, A. J.; Daudt, W. H.; Domicone, J. J.; Gilkey, J. W. Crystalline organosilsesquioxanes. J. Am. Chem. Soc. 1955, 77 (16), 4248-4252.
8. Sprung, M. M.; Guenther, F. O. The partial hydrolysis of methyltri-N-propoxysilane, methyltriisopropoxysilane and methyltri-N-butoxysilane. J. Am. Chem. Soc. 1955, 77 (22), 6045-6047.
9. Vogt, L. H.; Brown, J. F. Crystalline methylsilsesquioxanes. Inorg Chem 1963, 2 (1), 189-192.
10. Sprung, M. M.; Guenther, F. O. The partial hydrolysis of ethyltriethoxysilane. J. Am. Chem. Soc. 1955, 77 (15), 3996-4002.
11. Brown, J. F.; Vogt, L. H. Polycondensation of cyclohexylsilanetriol. J. Am. Chem. Soc. 1965, 87 (19), 4313-4317.
12. Voronkov, M. G.; Martynova, T. N.; Mirskov, R. G.; Belyi, V. I. Octavinylsilsesquioxane. Zh Obshch Khim+ 1979, 49 (7), 1522-1525.
13. Brown, J. F. Polycondensation of phenylsilanetriol. J. Am. Chem. Soc. 1965, 87 (19), 4317-4324.
14. Sprung, M. M.; Guenther, F. O. The hydrolysis of normal-amyltriethoxysilane and phenyltriethoxysilane. J Polym Sci 1958, 28 (116), 17-34.
15. Brown, J. F.; Vogt, L. H.; Prescott, P. I. Preparation and characterization of lower equilibrated phenylsilsesquioxanes. J. Am. Chem. Soc. 1964, 86 (6), 1120-1125.
16. Feher, F. J.; Newman, D. A.; Walzer, J. F. Silsesquioxanes as models for silica surfaces. J. Am. Chem. Soc. 1989, 111 (5), 1741-1748.
17. Feher, F. J.; Budzichowski, T. A.; Blanski, R. L.; Weller, K. J.; Ziller, J. W. Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes - [(Ccyclo-C5h9)7si7o9(Oh)3], [(Cyclo-C7h13)7si7o9(Oh)3], and [(Cyclo-C7h13)6si6o7(Oh)4]. Organometallics 1991, 10 (7), 2526-2528.
18. Feher, F. J.; Soulivong, D.; Lewis, G. T. Facile framework cleavage reactions of a completely condensed silsesquioxane framework. J. Am. Chem. Soc. 1997, 119 (46), 11323-11324.
19. Feher, F. J.; Soulivong, D.; Nguyen, F. Practical methods for synthesizing four incompletely condensed silsesquioxanes from a single R8Si8O12 framework. Chem Commun 1998, (12), 1279-1280.
20. Feher, F. J.; Terroba, R.; Ziller, J. W. A new route to incompletely-condensed silsesquioxanes: base-mediated cleavage of polyhedral oligosilsesquioxanes. Chem Commun 1999, (22), 2309-2310.
21. Kettwich, S. C.; Pierson, S. N.; Peloquin, A. J.; Mabry, J. M.; Iacono, S. T. Anomalous macromolecular assembly of partially fluorinated polyhedral oligomeric silsesquioxanes. New J Chem 2012, 36 (4), 941-946.
22. Zhou, H.; Ye, Q.; Xu, J. Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Materials Chemistry Frontiers 2017, 1 (2), 212-230.
23. Auner, N.; Bats, J. W.; Katsoulis, D. E.; Suto, M.; Tecklenburg, R. E.; Zank, G. A. Chemistry of hydrogen-octasilsesquioxane: Preparation and characterization of octasilsesquioxane-containing polymers. Chem Mater 2000, 12 (11), 3402-3418.
24. Costa, R. O. R.; Vasconcelos, W. L.; Tamaki, R.; Laine, R. M. Organic/inorganic nanocomposite star polymers via atom transfer radical polymerization of methyl methacrylate using octafunctional silsesquioxane cores. Macromolecules 2001, 34 (16), 5398-5407.
25. Pyun, J.; Matyjaszewski, K. The synthesis of hybrid polymers using atom transfer radical polymerization: Homopolymers and block copolymers from polyhedral oligomeric silsesquioxane monomers. Macromolecules 2000, 33 (1), 217-220.
26. Xu, H. Y.; Kuo, S. W.; Lee, J. S.; Chang, F. C. Preparations, thermal properties, and T-g increase mechanism of inorganic/organic hybrid polymers based on polyhedral oligomeric silsesquioxanes. Macromolecules 2002, 35 (23), 8788-8793.
27. Xu, H. Y.; Kuo, S. W.; Huang, C. F.; Chang, F. C. Characterization of poly(vinyl pyrrolidone-co-isobutylstyryl polyhedral oligomeric silsesquioxane) nanocomposites. J Appl Polym Sci 2004, 91 (4), 2208-2215.
28. Xu, H. Y.; Kuo, S. W.; Chang, F. C. Significant glass transition temperature increase based on polyhedral oligomeric silsequioxane (POSS) copolymer through hydrogen bonding. Polym Bull 2002, 48 (6), 469-474.
29. Xu, H. Y.; Kuo, S. W.; Huang, C. F.; Chang, F. C. Poly(acetoxystyrene-co-isobutylstyryl POSS) nanocomposites: Characterization and molecular interaction. J Polym Res-Taiwan 2002, 9 (4), 239-244.
30. Fasce, D. P.; Williams, R. J. J.; Erra-Balsells, R.; Ishikawa, Y.; Nonami, H. One-step synthesis of polyhedral silsesquioxanes bearing bulky substituents: UV-MALDI-TOF and ESI-TOF mass spectrometry characterization of reaction products. Macromolecules 2001, 34 (11), 3534-3539.
31. Fasce, D. P.; Williams, R. J. J.; Mechin, F.; Pascault, J. P.; Llauro, M. F.; Petiaud, R. Synthesis and characterization of polyhedral silsesquioxanes bearing bulky functionalized substituents. Macromolecules 1999, 32 (15), 4757-4763.
32. Tamaki, R.; Tanaka, Y.; Asuncion, M. Z.; Choi, J. W.; Laine, R. M. Octa(aminophenyl)silsesquioxane as a nanoconstruction site. J. Am. Chem. Soc. 2001, 123 (49), 12416-12417.
33. Lee, A.; Lichtenhan, J. D. Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 1998, 31 (15), 4970-4974.
34. Mather, P. T.; Jeon, H. G.; Romo-Uribe, A.; Haddad, T. S.; Lichtenhan, J. D. Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers. Macromolecules 1999, 32 (4), 1194-1203.
35. Zheng, L.; Kasi, R. M.; Farris, R. J.; Coughlin, E. B. Synthesis and thermal properties of hybrid copolymers of syndiotactic polystyrene and polyhedral oligomeric silsesquioxane. J. Polym. Sci. Pol. Chem. 2002, 40 (7), 885-891.
36. Tsuchida, A.; Bolln, C.; Sernetz, F. G.; Frey, H.; Mulhaupt, R. Ethene and propene copolymers containing silsesquioxane side groups. Macromolecules 1997, 30 (10), 2818-2824.
37. 李建裕. 有機/無機多面體矽氧烷寡聚物奈米複合材料. 國立交通大學, 新竹市, 2002.
38. Utracki, L. A., Clay-containing polymeric nanocomposites. iSmithers Rapra Publishing: 2004; Vol. 1.
39. Roy, X.; Lee, C. H.; Crowther, A. C.; Schenck, C. L.; Besara, T.; Lalancette, R. A.; Siegrist, T.; Stephens, P. W.; Brus, L. E.; Kim, P.; Steigerwald, M. L.; Nuckolls, C. Nanoscale atoms in solid-state chemistry. Science 2013, 341 (6142), 157-160.
40. Zhang, W.-B.; Yu, X.; Wang, C.-L.; Sun, H.-J.; Hsieh, I. F.; Li, Y.; Dong, X.-H.; Yue, K.; Van Horn, R.; Cheng, S. Z. D. Molecular nanoparticles are unique elements for macromolecular science: From “Nanoatoms” to giant molecules. Macromolecules 2014, 47 (4), 1221-1239.
41. Meldrum, A. N. A beta-lactonic acid from acetone and malonic acid. Journal of the Chemical Society 1908, 93, 598-601.
42. Davidson, D.; Bernhard, S. A. The structure of Meldrum's supposed beta-lactonic Acid. J. Am. Chem. Soc. 1948, 70 (10), 3426-3428.
43. Arnett, E. M.; Harrelson, J. A. Ion-pairing and reactivity of enolate anions .8. Enolization, homohydrogen-bonding and the correlation of Pkas with rates of alkylation and redox potentials for some beta-di-carbonyl and tri-carbonyl compounds in dimethylsulfoxide. Gazz Chim Ital 1987, 117 (4), 237-243.
44. Blom, C. E.; Gunthard, H. H. Rotational-isomerism in methyl formate and methyl acetate - a low-temperature matrix infrared study using thermal molecular-beams. Chem Phys Lett 1981, 84 (2), 267-271.
45. Wiberg, K. B.; Laidig, K. E. Barriers to rotation adjacent to double bonds. 3. The carbon-oxygen barrier in formic acid, methyl formate, acetic acid, and methyl acetate. The origin of ester and amide resonance. J. Am. Chem. Soc. 1987, 109 (20), 5935-5943.
46. McNab, H. Meldrum's acid. Chemical Society Reviews 1978, 7 (3), 345-358.
47. Pita, B.; Sotelo, E.; Suárez, M.; Raviña, E.; Ochoa, E.; Verdecia, Y.; Novoa, H.; Blaton, N.; de Ranter, C.; Peeters, O. M. Pyridazine derivatives. Part 21:1 Synthesis and structural study of novel 4-aryl-2,5-dioxo-8-phenylpyrido[2,3-d]pyridazines. Tetrahedron 2000, 56 (16), 2473-2479.
48. Hantzsch, A. Ueber die synthese pyridinartiger verbindungen aus acetessigäther und aldehydammoniak. Justus Liebigs Annalen der Chemie 1882, 215 (1), 1-82.
49. Knoevenagel, E. Condensation von malonsäure mit aromatischen aldehyden durch ammoniak und amine. Berichte der deutschen chemischen Gesellschaft 1898, 31 (3), 2596-2619.
50. Kadam, A. J.; Desai, U. V.; Mane, R. B. Synthesis of deuterium labelled acids. Journal of Labelled Compounds and Radiopharmaceuticals 1999, 42 (9), 835-842.
51. Fillion, E.; Fishlock, D.; Wilsily, A.; Goll, J. M. Meldrum's acids as acylating agents in the catalytic intramolecular Friedel−Crafts reaction. The Journal of Organic Chemistry 2005, 70 (4), 1316-1327.
52. Hedge, J. A.; Kruse, C. W.; Snyder, H. R. Some condensation reactions of isopropylidene malonate1. The Journal of Organic Chemistry 1961, 26 (9), 3166-3170.
53. Bigi, F.; Carloni, S.; Ferrari, L.; Maggi, R.; Mazzacani, A.; Sartori, G. Clean synthesis in water. Part 2: Uncatalysed condensation reaction of Meldrum's acid and aldehydes. Tetrahedron Letters 2001, 42 (31), 5203-5205.
54. Kaupp, G.; Reza Naimi-Jamal, M.; Schmeyers, J. Solvent-free Knoevenagel condensations and Michael additions in the solid state and in the melt with quantitative yield. Tetrahedron 2003, 59 (21), 3753-3760.
55. Chen, B.-C.; Lue, P. A Convenient preparation of 5,5-dialkyl Meldrum's acid. Organic Preparations and Procedures International 1992, 24 (2), 185-188.
56. Wolffs, M.; Kade, M. J.; Hawker, C. J. An energy efficient and facile synthesis of high molecular weight polyesters using ketenes. Chem Commun 2011, 47 (38), 10572-10574.
57. Dumas, A. M.; Fillion, E. Meldrum’s acids and 5-alkylidene Meldrum’s acids in catalytic carbon−carbon bond-forming processes. Accounts Chem. Res. 2010, 43 (3), 440-454.
58. Staudinger, H.; Klever, H. W. Keten. Bemerkung zur Abhandlung zur Abhandlung der HHrn. V.T. Wilsmore und A. W. Stewart). Berichte der deutschen chemischen Gesellschaft 1908, 41 (1), 1516-1517.
59. Leibfarth, F. A.; Kang, M.; Ham, M.; Kim, J.; Campos, L. M.; Gupta, N.; Moon, B.; Hawker, C. J. A facile route to ketene-functionalized polymers for general materials applications. Nature Chemistry 2010, 2, 207.
60. Leibfarth, F. A.; Wolffs, M.; Campos, L. M.; Delany, K.; Treat, N.; Kade, M. J.; Moon, B.; Hawker, C. J. Low-temperature ketene formation in materials chemistry through molecular engineering. Chem Sci 2012, 3 (3), 766-771.
61. Wu, J.; Mather, P. T. POSS Polymers: Physical properties and biomaterials applications. Polymer Reviews 2009, 49 (1), 25-63.
62. Carroll, J. B.; Waddon, A. J.; Nakade, H.; Rotello, V. M. “Plug and play” polymers. thermal and X-ray characterizations of noncovalently grafted polyhedral oligomeric silsesquioxane (POSS)−polystyrene nanocomposites. Macromolecules 2003, 36 (17), 6289-6291.
63. Sánchez‐Soto, M.; Illescas, S.; Milliman, H.; Schiraldi, D. A.; Arostegui, A. Morphology and thermomechanical properties of melt‐mixed polyoxymethylene/polyhedral oligomeric silsesquioxane nanocomposites. Macromolecular Materials and Engineering 2010, 295 (9), 846-858.
64. Fu, B. X.; Yang, L.; Somani, R. H.; Zong, S. X.; Hsiao, B. S.; Phillips, S.; Blanski, R.; Ruth, P. Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. J Polym Sci Pol Phys 2001, 39 (22), 2727-2739.
65. Guerrero, G.; Venturi, D.; Peters, T.; Rival, N.; Denonville, C.; Simon, C.; Henriksen, P. P.; Hägg, M.-B. Influence of functionalized nanoparticles on the CO2/N2 separation properties of PVA-based gas separation membranes. Energy Procedia 2017, 114, 627-635.
66. Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science 1991, 62 (2), 165-185.
67. Liu, C.; Chen, T.; Yuan, C. H.; Song, C. F.; Chang, Y.; Chen, G. R.; Xu, Y. T.; Dai, L. Z. Modification of epoxy resin through the self-assembly of a surfactant-like multi-element flame retardant. J Mater Chem A 2016, 4 (9), 3462-3470.
68. Schartel, B. Phosphorus-based flame retardancy mechanisms—old hat or a starting point for future development? Materials 2010, 3 (10), 4710-4745.
69. Kashiwagi, T.; Gilman, J. W.; Butler, K. M.; Harris, R. H.; Shields, J. R.; Asano, A. Flame retardant mechanism of silica gel/silica. Fire and Materials 2000, 24 (6), 277-289.
70. Hsiue, G.-H.; Liu, Y.-L.; Tsiao, J. Phosphorus-containing epoxy resins for flame retardancy V: Synergistic effect of phosphorus–silicon on flame retardancy. J Appl Polym Sci 2000, 78 (1), 1-7.
71. Fu, B. X.; Lee, A.; Haddad, T. S. Styrene−butadiene−styrene triblock copolymers modified with polyhedral oligomeric silsesquioxanes. Macromolecules 2004, 37 (14), 5211-5218.
72. Leu, C.-M.; Chang, Y.-T.; Wei, K.-H. Synthesis and dielectric properties of polyimide-tethered polyhedral oligomeric silsesquioxane (POSS) nanocomposites via POSS-diamine. Macromolecules 2003, 36 (24), 9122-9127.
73. Tseng, M.-C.; Liu, Y.-L. Preparation, morphology, and ultra-low dielectric constants of benzoxazine-based polymers/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer 2010, 51 (23), 5567-5575.
74. Liao, Y.-T.; Lin, Y.-C.; Kuo, S.-W. Highly thermally stable, transparent, and flexible polybenzoxazine nanocomposites by combination of double-decker-shaped polyhedral silsesquioxanes and polydimethylsiloxane. Macromolecules 2017, 50 (15), 5739-5747.
75. Huang, M.; Hsu, C.-H.; Wang, J.; Mei, S.; Dong, X.; Li, Y.; Li, M.; Liu, H.; Zhang, W.; Aida, T.; Zhang, W.-B.; Yue, K.; Cheng, S. Z. D. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science 2015, 348 (6233), 424-428.
76. Liu, H.; Luo, J.; Shan, W.; Guo, D.; Wang, J.; Hsu, C.-H.; Huang, M.; Zhang, W.; Lotz, B.; Zhang, W.-B.; Liu, T.; Yue, K.; Cheng, S. Z. D. Manipulation of Self-Assembled Nanostructure Dimensions in Molecular Janus Particles. ACS Nano 2016, 10 (7), 6585-6596.
77. Hsu, C.-H.; Yue, K.; Wang, J.; Dong, X.-H.; Xia, Y.; Jiang, Z.; Thomas, E. L.; Cheng, S. Z. D. Thickness-dependent order-to-order transitions of bolaform-like giant surfactant in thin films. Macromolecules 2017, 50 (18), 7282-7290.
78. Wu, K.; Huang, M.; Yue, K.; Liu, C.; Lin, Z.; Liu, H.; Zhang, W.; Hsu, C.-H.; Shi, A.-C.; Zhang, W.-B.; Cheng, S. Z. D. Asymmetric giant “bolaform-like” surfactants: Precise synthesis, phase diagram, and crystallization-induced phase separation. Macromolecules 2014, 47 (14), 4622-4633.
79. Cuiqin, F.; Jinxian, W.; Julin, W.; Tao, Z. Modification of carbon fiber surfaces via grafting with Meldrum's acid. Applied Surface Science 2015, 356, 9-17.
80. He, X.; Shang, Y.; Zhou, Y.; Yu, Z.; Han, G.; Jin, W.; Chen, J. Synthesis of coumarin-3-carboxylic esters via FeCl3-catalyzed multicomponent reaction of salicylaldehydes, Meldrum's acid and alcohols. Tetrahedron 2015, 71 (5), 863-868.
81. Cheawchan, S.; Uchida, S.; Sogawa, H.; Koyama, Y.; Takata, T. Thermotriggered catalyst-free modification of a glass surface with an orthogonal agent possessing Nitrile N-oxide and masked ketene functions. Langmuir 2016, 32 (1), 309-315.
82. Gopakumar, D. A.; Pasquini, D.; Henrique, M. A.; de Morais, L. C.; Grohens, Y.; Thomas, S. Meldrum’s acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water treatment and nanoparticle Removal. ACS Sustainable Chemistry & Engineering 2017, 5 (2), 2026-2033.
83. Sánchez-Soto, M.; Schiraldi, D. A.; Illescas, S. Study of the morphology and properties of melt-mixed polycarbonate–POSS nanocomposites. European Polymer Journal 2009, 45 (2), 341-352.
84. Zhang, X.; Sun, J.; Fang, S.; Han, X.; Li, Y.; Zhang, C. Thermal, crystalline, and mechanical properties of octa(3-chloropropylsilsesquioxane)/ poly(L-lactic acid) hybrid films. J Appl Polym Sci 2011, 122 (1), 296-303.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *