帳號:guest(18.218.87.150)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王冠婷
作者(外文):Wang, Kuan-Ting
論文名稱(中文):調控玻璃表面親疏水性以達成選擇性無電鍍鎳沉積之研究
論文名稱(外文):Selective Electroless Metal Deposition on Glass by Controlling the Hydrophilicity of Glass Surface
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):陳志銘
馮憲平
口試委員(外文):Chen, Chih-Ming
Feng, Shien-Ping
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032506
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:102
中文關鍵詞:疏水性玻璃選擇性無電鍍鎳沉積
外文關鍵詞:SelectiveElectrolessGlassHydrophilicity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:269
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究為開發一種新型選擇性金屬沉積製程,首先於玻璃基板表面製備金屬氧化層並結合含氟矽烷化合物進行表面改質,再利用雷射直寫方式來調控玻璃基板表面的親疏水特性,再佐以只能吸附在親水表面的含胺基矽烷奈米鈀觸媒,以達到選擇性金屬沉積目的。具體而言,此製程方式是將二氧化鈦 (Titanium dioxide, TiO2)塗佈於玻璃基板上,接著使用含氟矽烷化合物 (Perfluorooctyltriethoxysilane, PFOTES) 於TiO2表面進行改質形成疏水性表面,接著使用雷射直寫移除PFOTES疏水層,使原本疏水區域轉變為親水區域,透過基板表面的親疏水性差異,選擇性吸附自製水相含胺基矽烷奈米鈀觸媒 (3-2-(2-aminoethylamino) ethylamino propyl trimethoxysilane-polyvinyl alcohol capped palladium), ETAS-PVA-Pd),疏水區域作為一種保護層可以排斥水相高分子奈米鈀觸媒,以避免後續無電鍍鎳沉積,親水區域則可以吸附水相高分子奈米鈀觸媒而觸發無電鍍鎳沉積,以完成選擇性金屬化。
在分析方面,以水滴接觸角檢測儀 (Water contact angle measurement) 分析各實驗階段基板表面的親疏水性,以原子力顯微鏡 (Atomic force microscope, AFM) 觀察矽烷化合物在玻璃基板上的分佈情形與使用雷射後基板的形貌變化分析,以X 射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 分析矽烷化合物的接枝方向並證明雷射可以移除疏水層,最後以掃描式電子顯微鏡(Scanning electron microscopy, SEM) 與光學顯微鏡 (Optical microscopy, OM) 觀察無電鍍鎳磷層之表面形貌及厚度變化。
從XPS分析結果可以證明PFOTES不會有倒接的情形,即氟基是朝上致使能夠有效的產生疏水性;從SEM表面形貌的觀察結果,可以得知隨著疏水層受到雷射影響程度的不同對於無電鍍鎳沉積的形貌差異可以區分四個區域,第一區域稱為雷射無影響區域 (Non affected zone) 即為未被雷射所影響的疏水區域;第二區域為雷射影響外區 (Laser affected zone (outside)) ,由於基板熱傳導性不佳,雷射過程產生熱聚集現象,使得 TiO2間接被雷射的熱能所灼燒而發生變形的現象;第三區域為雷射影響內區 (Laser affected zone (inside)) ,疏水層被雷射直接破壞至一定程度,使鈀觸媒被吸附於基板上,而能催化無電鍍鎳沉積;而第四區域為雷射輻射區域 (Laser irradiated zone) ,此區域疏水層被雷射完全移除,使得鈀觸媒被吸附於基板上,而能催化無電鍍鎳沉積。
此外本研究也對雷射直寫所導致的鎳外溢問題與PFOTES改質條件不足而產生的表面溢鍍 (Background plating or Ghost plating) ,進行製程改善。對於鎳外溢問題,吾人嘗試使用電子式製冷器改善鎳外溢問題,利用降低基板表面溫度,減少雷射產生的熱聚集現象,縮小雷射影響區;而表面溢鍍則嘗試使用不同型態的TiO2漿料進行PFOTES表面改質,製備出不同疏水能力的疏水層來探討後續對於選擇性鎳沉積的影響。由於不同型態的TiO2於玻璃基板上會形成不同的表面形貌與粗糙度,使PFOTES進行表面改質時會產生不同的疏水程度,此對於排斥水相高分子奈米鈀觸媒的效果會有所影響。而在實驗的結果中發現以以平均粒徑為300 nm的TiO2漿料 (Ti-300) 塗佈於玻璃基板上進行PFOTES改質,所製備的疏水層能力最佳,能完全避免表面液鍍的發生。
本研究的最後也嘗試進行製程的改良,藉由簡易的化學合成,將疏水性官能團合成至奈米顆粒上形成疏水性塗料,再將此塗料直接塗佈於玻璃基板上形成疏水層,成功地將原製程中先塗佈TiO2奈米顆粒再進行表面改質的兩步驟製程合併成一步驟製程。
In this study, we developed a unique method to realize selectively electroless metal deposition through subtly controlling the hydrophilicity of glass substrate by silane modification and laser patterning.
This process involves forming a superhydrophobic surface using perfluorooctyltriethoxysilane (PFOTES) modification on a titanium dioxide (TiO2) coated glass in the first step, and then applying laser beam to pattern out to allow bottom surface exposed. Those exposed surface is adsorbing homemade hydrophilic Palladium (Pd) catalyst which is composed of 3-[2-(2-aminoethylamino) ethylamino] propyl-trimethoxysilane (ETAS) grafted, ploy(vinyl alcohol) capped Pd nanoplaticles (ETAS-PVA-Pd) so that enables the following metallization in a desired circuit design.
The process is characterized by atomic force microscopy (AFM) to observe the distribution of PFOTES on the substrate, water contact angle (WCA) to evaluate the effect of PFOTES modification, x-ray photoelectron spectroscopy (XPS) to analyze PFOTES grafting on TiO2 and prove PFOTES removal by laser etching, optical microscope (OM) and scanning electron microscope (SEM) to describe the profile of nickel-phosphorus (Ni-P) pattern.
In addition, we also find the electroless deposition (ELD) Ni-P line width is three times wider than the laser ablated width, which is originated from the poor thermal conductivity of glass substrate, and we try to minimize the area of laser-affected zone (LAZ) by using the thermoelectric cooler. Besides, we also investigate the effect of three different TiO2 coatings on the performance of PFOTES modification and figure out how it affects the ELD layer quality in subsequent steps. Specifically, three types of TiO2 layer coated from titanium diisopropoxide bis (acetylacetonate) precursor (Ti-TTDB), 20 nm TiO2 nanoparticle suspension (Ti-20) and 300nm TiO2 nanoparticles slurries (Ti-300) were coated and sintered on bare glass. After PFOTES modification, the surface was turned to hydrophobic due to the exposed fluro moieties. The superhydrophobic surface acts as a shelter that prevents hydrophilic ETAS-PVA-Pd adsorption, which is needed to activate ELD.
It is found the WCA of the hydrophobic surface formed by Ti-300 coating and PFOTES grafting exceeds 150°, corresponding to the superhydrophobic level; while the WCA of the surface formed by Ti-TTDB and Ti-20 coating and PFOTES grafting were only 110° and 130°, respectively. Evidenced by OM images, the superhydrophobic surface formed by Ti-300 and PFOTES can repel ETAS-PVA-Pd most efficiently and thus result in no ghost plating. By contract, in the samples processed by Ti-TTDB and Ti-20, ELD can occur randomly on undesired places on the glass due to insufficient hydrophobicity.
Furthermore, we also synthesize new hydrophobic pastes that contains hydrophobic functional groups-modified metal oxide nanoparticles to shorten original two-step process. Preliminary result of paste characterizations and their performance on direct metallization process is evaluated.
摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XIII
第1章 緒論 1
1.1 前言 1
1.2 選擇性金屬沉積 3
1.3 研究目的與動機 5
第2章 文獻回顧 7
2.1 選擇性金屬沉積 7
2.1.1 微壓印成型法 7
2.1.2 光罩成型法 11
2.1.3 直寫成型法 13
2.2 無電鍍鎳沉積 17
2.2.1 無電鍍沉積基本原理 17
2.2.2 無電鍍鎳的反應機制 18
2.2.3 無電鍍鎳液的組成與特性 19
2.3 矽烷化合物之表面改質 22
2.3.1 矽烷化合物的結構與種類 22
2.3.2 矽烷化合物表面改質之機制 23
2.3.3 以氟基矽烷化合物進行表面改質之特性 25
2.3.4 奈米微結構結合氟基矽烷化合物進行疏水層製備 29
第3章 實驗 32
3.1 設備與儀器 32
3.2 儀器原理與分析方法 34
3.2.1 接觸角量測 34
3.2.2 原子力顯微鏡 (Atomic Force Microscope, AFM) 36
3.2.3 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 37
3.2.4 X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 39
3.2.5 紫外光-可見光光譜儀 (UV-Vis Spectrophotometer) 40
3.2.6 光纖雷射 (FIBER Laser) 41
3.2.7 半導體製冷器 (Thermoelectric cooler) 42
3.3 藥品與材料 44
3.4 實驗方法 46
3.4.1 ETAS-PVA-Pd奈米鈀觸媒合成 46
3.4.2 疏水保護層製備 47
3.4.3 雷射圖案化與無電鍍鎳沉積 50
第4章 結果與討論 52
4.1 雷射吸收層 52
4.2 疏水層分析 53
4.2.1 表面親水性分析 53
4.2.2 表面形貌分析 54
4.2.3 表面化學鍵結分析 55
4.3 含氟矽烷化合物隨浸泡時間變化之表面改質的差異 62
4.4 雷射圖案化 67
4.4.1 表面親水性分析 67
4.4.2 表面形貌分析 68
4.4.3 表面化學鍵結分析 69
4.5 無電鍍金屬化後表面形貌分析 71
4.5.1 鎳外溢缺陷分析與改善 72
4.5.2 表面溢鍍缺陷分析與改善 80
4.6 結論 89
第5章 奈米微結構結合氟基矽烷化合物之研究 91
5.1 前言 91
5.2 疏水性塗料合成之實驗流程 92
5.3 以氟基矽烷化合物改質奈米粒子之疏水性塗料 94
5.3.1 疏水性塗料於基板表面之分布情形 94
5.3.2 疏水性塗料於表面的親水性分析 95
5.3.3 無電鍍金屬化後表面形貌分析 96
5.4 結論與未來展望 98
參考資料 99

[1] A. B. Shorey, R. Lu, 2016 Pan Pacific Microelectronics Symposium (Pan Pacific), 2016.
[2] C. W. Hsu, W. Y. Wang, S. H. Wang, Y. H. Kao, T. C. Wei, 10th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2015.
[3] Y. Xia, G. M. Whitesides, Angewandte Chemie International Edition, 1998, 37, 550-575.
[4] P. C. Hidber, W. Helbig, E. Kim, G. M. Whitesides, Langmuir, 1996, 12, 1375-1380.
[5] T. B. Carmichael, S. J. Vella, A. Afzali, Langmuir, 2004, 20, 5593-5598.
[6] T. Kaufmann, B. J. Ravoo, Polymer Chemistry, 2010, 1, 371-387.
[7] C. Donzel, M. Geissler, A. Bernard, H. Wolf, B. Michel, J. Hilborn, E. Delamarche, Advanced Materials, 2001, 13, 1164.
[8] S. Lamping, B. J. Ravoo, Journal of Materials Chemistry C, 2017, 5, 5882.
[9] S. Nishimoto, A. Kubo, X. Zhang, Z. Liu, N. Taneichi, T. Okui, T. Murakami, T. Komine, A. Fujishima, Applied Surface Science, 2008, 254, 5891.
[10] H. Sugimura, T. Hanji, O. Takai, T. Masuda, H. Misawa, Electrochimica Acta, 2001, 47, 103.
[11] J. Cao, Z. Wu, J. Yang, S. Li, H. Tang, G. Xie, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 374.
[12] M. Geissler, Y. Xia, Advanced Materials, 2004, 16, 1249.
[13] Y. C. Liao, Z. K. Kao, ACS Applied Materials & Interfaces, 2012, 4, 5109.
[14] H. S. Cole, Y. S. Liu, J. W. Rose, R. Guida, Applied Physics Letters, 1988, 53, 2111.
[15] K. M. Norelli, V. M. Dubin, P. N. Plassmeyer, ECS Transactions, 2017, 77, 887.
[16] H. Esrom, MRS Proceedings, 2011, 204, 457.
[17] G. Schmid, L. F. Chi, Advanced Materials, 1998, 10, 515.
[18] A. Brenner, G. E. Riddel, Research of the National Bureau of Standards, 1947, 39, 385.
[19] T. Yonezawa, K. Imamura, N. Kimizuka, Langmuir, 2001, 17, 4701.
[20] Y. Okinaka, T. Osaka, Advances in Electrochemical Science and Engineering, 2008, 2, 55.
[21] H. F. Hsu, C. L. Tsai, C. W. Lee, H. Y. Wu, Thin Solid Films, 2009, 517, 4786.
[22] M. E. Touhami, E. Chassaing, M. Cherkaoui, Electrochimica Acta, 2003, 48, 3651.
[23] X. Y. Liu, W. Richtering, R. Akolkar, Journal of The Electrochemical Society, 2017, 164, 498.
[24] 賴奎章, 碩士論文, 化學工程學系, 國立中興大學, 2015, URI: http://hdl.handle.net/11455/91464.
[25] T. Osaka, M. Yoshino, Electrochimica Acta, 2007, 53, 271.
[26] 謝俊明, 行政院勞工委員會勞工安全衛生研究所, 2008.
[27] Y. S. Huang, F. Z. Cui, Surface and Coatings Technology, 2007, 201, 5416.
[28] M. V. Sullivan, J. H. Eigler, Journal of The Electrochemical Society, 1957, 104, 226.
[29] A. Vaškelis, A. Jagminien, A. Prokoptchik, Surface and Coatings Technology, 1986, 27, 301.
[30] H. Y. Jin, D. Yang, D. Sun, Rare metals, 2010, 29, 401.
[31] T. S. N. I. Baskaran, A. Stephen, Materials Chemistry and Physics, 2006, 99, 117.
[32] Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, C. Mai, Composites Part A: Applied Science and Manufacturing, 2010, 41, 806.
[33] D. Olmos, J. G. Benito, A. J. Aznar, J. Baselga, Journal of Materials Processing Technology, 2003, 143-144, 82.
[34] T. Osaka, M. Yoshino, Electrochimica Acta, 2007, 53, 271.
[35] B. Arkles, Paint and Coatings Industry, 2006, 22, 114.
[36] M. Zhu, M. Z. Lerum, W. Chen, Langmuir, 2012, 28, 416.
[37] W. Y. Wang, K. Kala, T. C. Wei, Langmuir, 2018, 34, 13597.
[38] A. Hozumi, K. Ushiyama, H. Sugimura, O. Takai, Langmuir, 1999, 15, 7600.
[39] Y. Zhang, X. He, J. Ouyang, H. Yang, Scientific Reports, 2013, 3, 2948.
[40] J. Wang, C. K. Ober, Macromolecules, 1997, 30, 7560.
[41] T. Ishizaki, Y. Masuda, M. Sakamoto, Langmuir, 2011, 27, 4780.
[42] H. Wang, Y. Xue, J. Ding, L. Feng, X. Wang, T. Lin, Angewandte Chemie International Edition, 2011, 50, 11433.
[43] R. N. Wenzel, Industrial & Engineering Chemistry, 1936, 28, 988.
[44] B. Bhushan, Y. C. Jung, Nanotechnology, 2016, 17, 19.
[45] M. A. Raza, E. S. Kooij, A. V. Silfhout, B. Poelsema, Langmuir, 2010, 26, 12962.
[46] H. Zhou, H. Wang, H. Niu, A. Gestos, X. Wang, T. Lin, Advanced Materials, 2012, 24, 2409.
[47] X. Lu, Y. C. Hu, Bioresources, 2016, 11, 4605.
[48] J. Tarrade, T. Darmanin, E. T. Givenchy, F. Guittard, D. Debarnot, F. P. Epaillard, Applied Surface Science, 2014, 292, 782.
[49] Y. Lu, S. Sathasivam, J. Song, C. R. Crick, C. J. Carmalt, I. P. Parkin, Science, 2015, 347, 1132.
[50] B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, M. S. El-Aasser, Langmuir, 2001, 17, 2664.
[51] Y. Bai, Z. Li, B. Cheng, M. Zhang, K. Su, RSC Advances, 2017, 7, 21758.
[52] X. Pan, M. Q. Yang, X. Fu, N. Zhang, Y. J. Xu, Nanoscale, 2013, 5, 3601.
[53] J. G. Kim, E. J. Jung, Y. Kim, Y. Makarov, D. J. Choi, Ceramics International, 2014, 40, 3953.
[54] T. Osaka, M. Yoshino, Electrochimica Acta, 2007, 53, 271.
[55] B. Arkles, Paint and Coatings Industry , 2006, 22, 114.
[56] S. R. Darmakkolla, H. Tran, A. Gupta, S. B. Rananavare, RSC Advances, 2016, 6, 93219.
[57] Y. H. Kao, T. C. Wei, 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2017.
[58] M. Nosonovsky, B. Bhushan, Microsystem Technologies, 2005, 11, 535.
[59] Y. C. Jung, B. Bhushan, Nanotechnology, 2006, 17, 4970.



 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *