帳號:guest(3.143.203.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林政緯
作者(外文):Lin, Jheng-Wei
論文名稱(中文):利用聚苯乙烯-聚二甲基矽氧烷嵌段共聚物自組裝製備有序及無序光子晶體
論文名稱(外文):Ordered and Amorphous Photonic Crystals from Self-Assembled PS-PDMS Block Copolymers
指導教授(中文):何榮銘
指導教授(外文):Ho, Rong-Ming
口試委員(中文):蔣酉旺
薛涵宇
蔡敬誠
口試委員(外文):Chinag, Yeo-Wan
Hsueh, Han-Yu
Tsai, Jing-Cherng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032503
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:89
中文關鍵詞:嵌段共聚物自組裝模板化合成法光子晶體
外文關鍵詞:Block copolymersSelf assemblyTemplated synthesisPhotonic crystal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:130
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究擬利用聚苯乙烯-聚二甲基矽氧烷嵌段共聚物 (polystyrene-b-polydimethylsiloxane),進行自組裝結合模板化製程,製備高有序及無序光子晶體。首先利用拉伸塗佈法,進行嵌段共聚物奈米網狀薄膜之製備,再經由溶劑退火的方式,以獲得不同有序程度的奈米網狀薄膜,之後以氫氟酸分解含矽鏈段,獲得奈米多孔聚苯乙烯,以此多孔材料為模板,進行模板化溶凝膠法,移除模板後即可成功製備奈米網狀金屬氧化物。仿效自然,當其奈米網狀材料之有序尺寸或骨幹間距與入射波長相近,將可呈現如蝴蝶翅膀之結構性發光的光子晶體特性,於特定波長具有反射性。此結構性發光與奈米網狀結構之有序程度有關,具有高有序程度的網狀材料,將呈現高反射但與其反射性與入射角相依,對於相對無序(短程有序)的網狀材料,雖反射強度減弱但其反射性將與入射角無關。若此尺寸與間距遠小於其入射波長時,則將呈現光學超穎材料的特性,可達到高穿透之光學特性。本實驗的最終目的,乃是使用此奈米網狀陶瓷氧化物薄膜,以期在紫外光波段不吸收的前提下,製備紫外光波段高反射與高穿透之光學膜。
In this study, we aim to fabricate photonic (well-ordered) crystals and amorphous photonic (short-range-order) crystals with UVC responsive wavelength from the self-assembly of polystyrene-b-poly (dimethylsiloxane) (PS-PDMS) followed by templated syntheses, including templated sol-gel and crosslinking reactions. Nanonetwork-structured films with controlled ordering were obtained from the self-assembly of PS-PDMS by dip coating process followed by solvent annealing. With the morphological evolution during solvent annealing, nanonetwork phases with increasing ordering could be developed. Subsequently, hydrofluoric (HF) acid was used to etch the PDMS, giving the nanoporous PS as a template for templated syntheses, in particular for sol-gel reaction of ceramic oxide precursors. Biomimicking from nature, the forming nanonetwork material is expected to give structural coloration with high reflectance while the interdomain spacing is equivalent to the responsive wavelength. Most interestingly, the appearing optical properties were found to be strongly dependent on the degree of structural order for the forming networks. In contrast to the well-ordered networks from the butterfly wing structure with high reflectance but angle dependent, amorphous photonic crystals with partially ordered texture is expected to give unique optical behaviors with angle independence. Furthermore, the nanonetwork materials fabricated with interdomain spacing smaller than the responsive wavelength was found to give high transmittance with the characters of optical metamaterials. The final goal is to exploit the nanonetwork films fabricated as optical films for high reflectance and transmittance materials, in particular, in the applications of UVC optical devices.
摘要........................................................... I
Abstract....................................................... II
Contents....................................................... IV
Figure Caption................................................. VI
Chapter 1. Introduction........................................ 1
1.1 Metamaterials.............................................. 1
1.1.1 Photonic crystals in nature...................... 1
1.1.2 Amorphous photonic crystals...................... 4
1.1.3 Subwavelength properties......................... 6
1.2 Nanonetwork phases......................................... 8
1.2.1 Nanostructures of gyroid phase........................... 8
1.2.2 Nanostructures of diamond phase.......................... 12
1.3 Self-assembly.............................................. 13
1.3.1 Self-assembly of block copolymers (BCPs)................. 14
1.3.2 Self-assembly of silicon-containing BCPs................. 15
1.3.3 Fabrication of BCP thin films............................ 18
1.4 Templated synthesis........................................ 20
1.4.1 Bottom-up approaches for nanomaterials................... 22
1.4.2 Nanoporous templates from degradable block copolymers.... 23
1.4.3 Templated syntheses for nanonetwork materials............ 28
Chapter 2. Objectives.......................................... 30
Chapter 3. Experimental........................................ 32
3.1 Synthesis of PS-PDMS BCPs.................................. 32
3.2 Sample preparation......................................... 34
3.2.1 Solution casting for nanonetwork phases.................. 34
3.2.2 Dip coating for nanonetwork thin films................... 35
3.2.3 Fabrication of nanoporous templates...................... 36
3.3 Templated synthesis of nanonetwork SiO2.................... 36
3.4 Templated synthesis of nanonetwork chitosan................ 37
3.5 Removal of the PS template................................. 37
3.6 Instrumentation............................................ 38
Chapter 4. Results and Discussion.............................. 40
4.1 PS-PDMS thin films with nanonetwork textures............... 40
4.1.1 Nanonetwork bulk from solution casting................... 40
4.1.2 Nanonetwork thin films from dip coating.................. 44
4.1.3 Morphological evolution from thermal annealing........... 47
4.1.4 Morphological evolution from solvent annealing........... 50
4.2 Large Mn PS-PDMS films with nanonetwork textures........... 56
4.2.1 Nanonetwork bulk from solution casting................... 56
4.2.2 Morphological evolution from solvent annealing........... 58
4.3 Templated synthesis of nanonetwork materials............... 61
4.3.1 Nanoporous PS template from etched PS-PDMS............... 61
4.3.2 Templated sol-gel reaction for nanonetwork SiO2.......... 62
4.3.3 Templated crosslinking reaction for nanonetwork chitosan. 68
4.4 Measurements of optical properties in UVC regions.......... 72
4.4 Measurements of optical properties in UVC regions.......... 72
4.4.1 Low absorption materials................................. 72
4.4.2 Optical properties of nanonetwork materials.............. 75
Chapter 5. Conclusions......................................... 79
Chapter 6. References.......................................... 81
1. Veselago, V. G., The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi 1968, 10, 509–514.
2. Smith, D. R.; Pendry, J. B.; Wiltshire, M. C. K., Metamaterials and Negative Refractive Index. Science 2004, 305 (5685), 788-792.
3. Pendry, J. B., Negative Refraction Makes a Perfect Lens. Physical Review Letters 2000, 85 (18), 3966-3969.
4. Tsakmakidis, K. L.; Boardman, A. D.; Hess, O., /`Trapped rainbow/' storage of light in metamaterials. Nature 2007, 450 (7168), 397-401.
5. Pendry, J. B.; Holden, A. J.; Stewart, W. J.; Youngs, I., Extremely Low Frequency Plasmons in Metallic Mesostructures. Physical Review Letters 1996, 76 (25), 4773-4776.
6. Stewart, J. B. P. A. J. H. D. J. R. W. J., Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques 1999, 47 (11), 2075 - 2084.
7. Smith, D. R.; Padilla, W. J.; Vier, D. C.; Nemat-Nasser, S. C.; Schultz, S., Composite Medium with Simultaneously Negative Permeability and Permittivity. Physical Review Letters 2000, 84 (18), 4184-4187.
8. Lee, J.-H.; Singer, J. P.; Thomas, E. L., Micro-/Nanostructured Mechanical Metamaterials. Advanced Materials 2012, 24 (36), 4782-4810.
9. Vukusic, P.; Sambles, J. R.; Lawrence, C. R.; Wootton, R. J., Quantified interference and diffraction in single Morpho butterfly scales. Proceedings of the Royal Society of London. Series B: Biological Sciences 1999, 266 (1427), 1403.
10. Prum, R. O.; Quinn, T.; Torres, R. H., Anatomically diverse butterfly scales all produce structural colours by coherent scattering. Journal of Experimental Biology 2006, 209 (4), 748.
11. Vukusic, P.; Sambles, J.; Ghiradella, H., Optical classification of microstructure in butterfly wing-scales. Photonics Sci. News 2000, 6 (1), 61-66.
12. Saranathan, V.; Osuji, C. O.; Mochrie, S. G.; Noh, H.; Narayanan, S.; Sandy, A.; Dufresne, E. R.; Prum, R. O., Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proceedings of the National Academy of Sciences 2010, 107 (26), 11676-11681.
13. Epps, T. H.; Cochran, E. W.; Bailey, T. S.; Waletzko, R. S.; Hardy, C. M.; Bates, F. S., Ordered network phases in linear poly (isoprene-b-styrene-b-ethylene oxide) triblock copolymers. Macromolecules 2004, 37 (22), 8325-8341.
14. Vignolini, S.; Yufa, N. A.; Cunha, P. S.; Guldin, S.; Rushkin, I.; Stefik, M.; Hur, K.; Wiesner, U.; Baumberg, J. J.; Steiner, U., A 3D Optical Metamaterial Made by Self-Assembly. Advanced Materials 2012, 24 (10), OP23-OP27.
15. Hsueh, H.-Y.; Ling, Y.-C.; Wang, H.-F.; Chien, L.-Y. C.; Hung, Y.-C.; Thomas, E. L.; Ho, R.-M., Shifting Networks to Achieve Subgroup Symmetry Properties. Advanced Materials 2014, 26 (20), 3225-3229.
16. Maldovan, M.; Urbas, A. M.; Yufa, N.; Carter, W. C.; Thomas, E. L., Photonic properties of bicontinuous cubic microphases. Physical Review B 2002, 65 (16), 165123.
17. Shi, L; Zhang, Y; Dong, B; Zhan, T; Liu, X; Zi, J, Amorphous Photonic Crystals with Only Short-Range Order, Advanced Materials 2013, 25, 5314-5320.
18. Edagawa, K; Kanoko, S; Notomi, M, Photonic Amorphous Diamond Structure with a 3D Photonic Band Gap, Physical Review Letters 2008, 100, 013901.
19. Iwata, M; Teshima, M; Seki, T: Yoshika, S; Takeoka, Y, Bio-Inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background, Advanced Materials 2017, 29, 16050.
20. Walheim, S.; Schäffer, E.; Mlynek, J.; Steiner, U., Nanophase-separated polymer films as high performance, Science 1999, 283, 520
21. Hsueh, H.-Y.; Chen, H.-Y.; She, M.-S.; Chen, C.-K.; Ho, R.-M.; Gwo, S.; Hasegawa, H.; Thomas, E. L., Inorganic Gyroid with Exceptionally Low Refractive Index from Block Copolymer Templating. Nano Letters 2010, 10 (12), 4994-5000
22. Bates, F. S.; Fredrickson, G. H., Block copolymer thermodynamics: theory and experiment. Annual Review of Physical Chemistry 1990, 41 (1), 525-557.
23. Matsen, M. W.; Schick, M., Stable and unstable phases of a diblock copolymer melt. Physical Review Letters 1994, 72 (16), 2660-2663.
24. Bates, F. S.; Fredrickson, G., Block copolymers-designer soft materials. Physics today 2000.
25. Martín-Moreno, L.; García-Vidal, F. J.; Somoza, A. M., Self-Assembled Triply Periodic Minimal Surfaces as Molds for Photonic Band Gap Materials. Physical Review Letters 1999, 83 (1), 73-75.
26. Milhaupt, J. M.; Lodge, T. P., Homopolymer and small-molecule tracer diffusion in a gyroid matrix. Journal of Polymer Science Part B: Polymer Physics 2001, 39 (8), 843-859.
27. Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T., Incorporation of Metal Nanoparticles into a Double Gyroid Network Texture. Macromolecules 2006, 39 (21), 7352-7357.
28. Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K., Stability of the Perforated Layer (PL) Phase in Diblock Copolymer Melts. Macromolecules 1997, 30 (13), 3788-3795.
29. Hajduk, D. A.; Ho, R.-M.; Hillmyer, M. A.; Bates, F. S.; Almdal, K., Transition Mechanisms for Complex Ordered Phases in Block Copolymer Melts. The Journal of Physical Chemistry B 1998, 102 (8), 1356-1363.
30. Jinnai, H.; Hasegawa, H.; Nishikawa, Y.; Sevink, G. J. A.; Braunfeld, M. B.; Agard, D. A.; Spontak, R. J., 3D Nanometer-Scale Study of Coexisting Bicontinuous Morphologies in a Block Copolymer/Homopolymer Blend. Macromolecular Rapid Communications 2006, 27 (17), 1424-1429.
31. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K., Epitaxial Relationship for Hexagonal-to-Cubic Phase Transition in a Book Copolymer Mixture. Physical Review Letters 1994, 73 (1), 86-89.
32. Foerster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W., Complex Phase Behavior of Polyisoprene-Polystyrene Diblock Copolymers Near the Order-Disorder Transition. Macromolecules 1994, 27 (23), 6922-6935.
33. Wang, C.-Y.; Lodge, T. P., Unexpected Intermediate State for the Cylinder-to-Gyroid Transition in a Block Copolymer Solution. Macromolecular Rapid Communications 2002, 23 (1), 49-54.
34. Wang, C.-Y.; Lodge, T. P., Kinetics and Mechanisms for the Cylinder-to-Gyroid Transition in a Block Copolymer Solution. Macromolecules 2002, 35 (18), 6997-7006.
35. Sakurai, S.; Umeda, H.; Furukawa, C.; Irie, H.; Nomura, S.; Hyun Lee, H.; Kon Kim, J., Thermally induced morphological transition from lamella to gyroid in a binary blend of diblock copolymers. The Journal of Chemical Physics 1998, 108 (10), 4333-4339.
36. W. Hamley, I.; P. A. Fairclough, J.; J. Ryan, A.; Mai, S. M.; Booth, C., Lamellar-to-gyroid transition in a poly(oxyethylene)-poly(oxybutylene) diblock copolymer melt. Physical Chemistry Chemical Physics 1999, 1 (9), 2097-2101.
37. Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J., Effect of arm number and arm molecular weight on the solid-state morphology of poly(styrene-isoprene) star block copolymers. Macromolecules 1986, 19 (1), 215-224.
38. Luzzati, V.; Spegt, P., Polymorphism of lipids. Nature 1967, 215, 701-704.
39. Schoen, A., Technical Note NASA-TN-D-5541. NASA, Washington, DC 1970.
40. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J., The Gyroid: A New Equilibrium Morphology in Weakly Segregated Diblock Copolymers. Macromolecules 1994, 27 (15), 4063-4075.
41. Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T., Bicontinuous microdomain morphology of block copolymers. 1. Tetrapod-network structure of polystyrene-polyisoprene diblock polymers. Macromolecules 1987, 20 (7), 1651-1662.
42. Whitesides, G. M.; Grzybowski, B., Self-Assembly at All Scales. Science 2002, 295 (5564), 2418-2421.
43. Prockop, D. J.; Fertala, A., The Collagen Fibril: The Almost Crystalline Structure. Journal of Structural Biology 1998, 122 (1), 111-118.
44. Jung, Y. S.; Chang, J. B.; Verploegen, E.; Berggren, K. K.; Ross, C. A., A Path to Ultranarrow Patterns Using Self-Assembled Lithography. Nano Letters 2010, 10 (3), 1000-1005.
45. Lo, T.-Y.; Chao, C.-C.; Ho, R.-M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L., Phase Transitions of Polystyrene-b-poly(dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules 2013, 46 (18), 7513-7524.
46. Kim, J. K.; Lee, J. I.; Lee, D. H., Self-assembled block copolymers: Bulk to thin film. Macromolecular Research 2008, 16 (4), 267-292
47. Matsen, M., Thin films of block copolymer. The Journal of chemical physics 1997, 106 (18), 7781-7791.
48. Xu, T.; Hawker, C. J.; Russell, T. P., Interfacial interaction dependence of microdomain orientation in diblock copolymer thin films. Macromolecules 2005, 38 (7), 2802-2805.
49. Knoll, A.; Horvat, A.; Lyakhova, K.; Krausch, G.; Sevink, G.; Zvelindovsky, A.; Magerle, R., Phase behavior in thin films of cylinder-forming block copolymers. Physical Review Letters 2002, 89 (3), 035501.
50. http://www.liuli.com/en-us/index.aspx
51. Cao, G., Synthesis, properties and applications. World Scientific: 2004.
52. Das, B.; Subramaniam, S.; Melloch, M. R., Effects of electron-beam-induced damage on leakage currents in back-gated GaAs/AlGaAs devices. Semiconductor Science and Technology 1993, 8 (7), 1347.
53. Mansky, P.; Harrison, C. K.; Chaikin, P. M.; Register, R. A.; Yao, N., Nanolithographic templates from diblock copolymer thin films. Applied Physics Letters 1996, 68 (18), 2586-2588.
54. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H., Block Copolymer Lithography: Periodic Arrays of ~1011 Holes in 1 Square Centimeter. Science 1997, 276 (5317), 1401-1404.
55. Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell, T. P., Nanoscopic Templates from Oriented Block Copolymer Films. Advanced Materials 2000, 12 (11), 787-791.
56. Du, P.; Li, M.; Douki, K.; Li, X.; Garcia, C. B. W.; Jain, A.; Smilgies, D. M.; Fetters, L. J.; Gruner, S. M.; Wiesner, U.; Ober, C. K., Additive-Driven Phase-Selective Chemistry in Block Copolymer Thin Films: The Convergence of Top–Down and Bottom–Up Approaches. Advanced Materials 2004, 16 (12), 953-957.
57. Guo, F.; Andreasen, J. W.; Vigild, M. E.; Ndoni, S., Influence of 1,2-PB Matrix Cross-Linking on Structure and Properties of Selectively Etched 1,2-PB-b-PDMS Block Copolymers. Macromolecules 2007, 40 (10), 3669-3675.
58. Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A., Mesoporous Polystyrene Monoliths. Journal of the American Chemical Society 2001, 123 (7), 1519-1520.
59. Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A., Ordered Nanoporous Polymers from Polystyrene−Polylactide Block Copolymers. Journal of the American Chemical Society 2002, 124 (43), 12761-12773.
60. Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H., Three-Dimensionally Packed Nanohelical Phase in Chiral Block Copolymers. Journal of the American Chemical Society 2004, 126 (9), 2704-2705.
61. Ho, R.-M.; Tseng, W.-H.; Fan, H.-W.; Chiang, Y.-W.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H., Solvent-induced microdomain orientation in polystyrene-b-poly(l-lactide) diblock copolymer thin films for nanopatterning. Polymer 2005, 46 (22), 9362-9377.
62. Furneaux, R.; Rigby, W.; Davidson, A., The formation of controlled-porosity membranes from anodically oxidized aluminium. Nature 1989, 337 (6203), 147-149.
63. Chen, J.-T.; Shin, K.; Leiston-Belanger, J. M.; Zhang, M.; Russell, T. P., Amorphous carbon nanotubes with tunable properties via template wetting. Advanced Functional Materials 2006, 16 (11), 1476.
64. Hsueh, H.-Y.; Yao, C.-T.; Ho, R.-M., Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. Chemical Society Reviews 2015, 44 (7), 1974-2018.
65. Matsen, M. W.; Bates, F. S., Origins of Complex Self-Assembly in Block Copolymers. Macromolecules 1996, 29 (23), 7641-7644.
66. https://refractiveindex.info/?shelf=main&book=SiO2&page=Gao

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *