帳號:guest(18.191.72.224)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡佑丞
作者(外文):Chien, Yu-Cheng
論文名稱(中文):利用模板化無電電鍍法結合賈凡尼置換法製備金屬奈米網狀之氫化觸媒
論文名稱(外文):Fabrication of Metallic Nanonetworks via Templated Electroless Plating with Galvanic Replacement as Hydrogenation Catalyst
指導教授(中文):何榮銘
指導教授(外文):Ho, Rong-Ming
口試委員(中文):蔡敬誠
蔣酉旺
薛涵宇
口試委員(外文):Tsai, Jing-Chang
Chiang, Yeo-Wan
Hsueh, Han-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:106032502
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:107
中文關鍵詞:模板化無電電鍍法中孔高分子金屬奈米網狀結構氫化觸媒高分子氫化
外文關鍵詞:templated electroless platingmesoporous polymermetallic nanonetwork texturehydrogenation catalystpolymeric hydrogenation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:450
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究首先利用高分子與結晶性溶劑混合物的相分離行為,成功製備奈米多孔高分子材料,依此為模板,經模板化無電電鍍法,製備具有奈米網狀結構的多孔鎳。研究發現可透過使用具結晶性溶劑之溶液中的聚苯乙烯之使用濃度及分子量的控制,達到此多孔鎳之孔隙度、孔洞大小及骨架大小等結構因子之操控。同時,藉由模板化無電電鍍法中成核成長機制對金屬離子還原的特性,透過還原時間的長短,成功製備具有微米尺度可調控的奈米多孔鎳球。相較於商用的雷尼鎳,所製備的具奈米孔洞之微米鎳球,做為氫化觸媒,由於奈米級孔洞的高比表面積,將具有較優異的催化效果,而其微米尺度則提供良好的觸媒反應與回收所需之條件。同時,為了進一步提高觸媒催化效率,本實驗亦成功利用賈凡尼置換法,將鎳以鈀和鉑進行置換反應,修飾此奈米網狀鎳球形成雙金屬系統,呈現更為優異之氫化效率。
Herein, we aim to fabricate nanonetwork-structured Ni spheres via templated electroless plating by using mesoporous polymers from spinodal decomposition of polymer/crystalline solvent mixture as templates. With the control of polymer concentration and molecular weight of the PS in the solution using crystalline solvents, the porosity, pore size, and framework size of the fabricated Ni nanonetwork from templated electroless plating could be well tuned. By taking advantage of a nucleation and growth mechanism for the reduction of metallic ions from templated electroless plating, nanoporous Ni sphere in micrometer scale with controlled particle size can be successfully fabricated at which higher reduction potential materials such as Pd can be used as an initial nucleus for the reduction of Ni ion. In contrast to the commercial Raney® Ni, the fabricated nanoporous Ni sphere gives rise to superior performance as hydrogenation catalysts due to its high specific surface area while the controlled micrometer-sized sphere gives the optimized particle size for recyclability. To further enhance the catalytic efficiency, we aim to carry out galvanic replacement reaction for the electroless plating of Pd and Pt from the replacement of Ni, giving nanonetwork Ni decorated with noble metals. With the decoration of Pd or Pt, the modified Ni sphere is expected to give bimetallic nanonetwork catalysts for outstanding hydrogenation efficiency.
Abstract........................................................I
Contents......................................................III
List of Table...................................................V
Figure Caption................................................VII
Chapter 1 Introduction..........................................1
1.1 Mesoporous polymers from polymer mixtures...................1
1.2 Nanoporous polymers from block copolymers...................8
1.3 Templated electroless plating..............................15
1.3.1 Fabrication of Nanoporous metallics......................15
1.3.2 Nanoporous nickel for catalytic hydrogenation............26
1.4 Galvanic replacement reaction..............................31
Chapter 2 Objectives...........................................37
Chapter 3 Experimental methods.................................39
3.1 Sample Preparation.........................................39
3.1.1 Mesoporous PS templates..................................39
3.1.2 Nanoporous Ni from templated electroless plating.........39
3.1.3 Removal of PS template...................................41
3.1.4 Galvanic replacement reaction............................42
3.2 Hydrogenation experiments..................................42
3.2.1 Hydrogenation of monomers................................42
3.2.2 Hydrogenation of polymers................................43
3.3 Instrumentation............................................43
Chapter 4 Results and Discussion...............................46
4.1 Fabrication of mesoporous PS...............................46
4.2 Fabrication of nanoporous Ni sphere........................53
4.3 Performance of catalytic hydrogenation for monomers........60
4.3.1 Hydrogenation for cyclohexene and toluene................60
4.3.2 Hydrogenation for p-phenylenediamine.....................66
4.4 Galvanic replacement reaction for bimetallics..............70
4.4.1 Pd-Ni bimetallic system..................................70
4.4.2 Pt-Ni bimetallic system..................................77
4.5 Performance of catalytic hydrogenation for polymers........84
Chapter 5 Conclusion and Perspectives...........................95
References.....................................................98
1. Kumar, V.; Weller, J. E., A Process to Produce Microcellular PVC. International Polymer Processing 1993, 8 (1), 73-80.
2. Walheim, S.; Schäffer, E.; Mlynek, J.; Steiner, U., Nanophase-Separated Polymer Films as High-Performance Antireflection Coatings. Science 1999, 283 (5401), 520-522.
3. Seo, M.; Hillmyer, M. A., Reticulated Nanoporous Polymers by Controlled Polymerization-Induced Microphase Separation. Science 2012, 336 (6087), 1422-1425.
4. van de Witte, P.; Dijkstra, P. J.; van den Berg, J. W. A.; Feijen, J., Phase separation processes in polymer solutions in relation to membrane formation. Journal of Membrane Science 1996, 117 (1), 1-31.
5. Lloyd, D. R.; Kinzer, K. E.; Tseng, H. S., Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. Journal of Membrane Science 1990, 52 (3), 239-261.
6. Aubert, J. H.; Clough, R. L., Low-density, microcellular polystyrene foams. Polymer 1985, 26 (13), 2047-2054.
7. Samitsu, S.; Zhang, R.; Peng, X.; Krishnan, M. R.; Fujii, Y.; Ichinose, I., Flash freezing route to mesoporous polymer nanofibre networks. Nature Communications 2013, 4, 2653.
8. WebBook, N. C. Phase change data. http://webbook.nist.gov/chemistry/.
9. Lee, J. S.; Hirao, A.; Nakahama, S., Polymerization of monomers containing functional silyl groups. 5. Synthesis of new porous membranes with functional groups. Macromolecules 1988, 21 (1), 274-276.
10. Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A., Ordered Nanoporous Polymers from Polystyrene−Polylactide Block Copolymers. Journal of the American Chemical Society 2002, 124 (43), 12761-12773.
11. Uehara, H.; Yoshida, T.; Kakiage, M.; Yamanobe, T.; Komoto, T.; Nomura, K.; Nakajima, K.; Matsuda, M., Nanoporous Polyethylene Film Prepared from Bicontinuous Crystalline/Amorphous Structure of Block Copolymer Precursor. Macromolecules 2006, 39 (12), 3971-3974.
12. Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P., Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates. Science 2000, 290 (5499), 2126-2129.
13. Mansky, P.; Harrison, C. K.; Chaikin, P. M.; Register, R. A.; Yao, N., Nanolithographic templates from diblock copolymer thin films. Applied Physics Letters 1996, 68 (18), 2586-2588.
14. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H., Block Copolymer Lithography: Periodic Arrays of ~1011 Holes in 1 Square Centimeter. Science 1997, 276 (5317), 1401-1404.
15. Guo, F.; Andreasen, J. W.; Vigild, M. E.; Ndoni, S., Influence of 1,2-PB Matrix Cross-Linking on Structure and Properties of Selectively Etched 1,2-PB-b-PDMS Block Copolymers. Macromolecules 2007, 40 (10), 3669-3675.
16. Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H., Three-Dimensionally Packed Nanohelical Phase in Chiral Block Copolymers. Journal of the American Chemical Society 2004, 126 (9), 2704-2705.
17. Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell, T. P., Nanoscopic Templates from Oriented Block Copolymer Films. Advanced Materials 2000, 12 (11), 787-791.
18. Ho, R.-M.; Tseng, W.-H.; Fan, H.-W.; Chiang, Y.-W.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H., Solvent-induced microdomain orientation in polystyrene-b-poly(l-lactide) diblock copolymer thin films for nanopatterning. Polymer 2005, 46 (22), 9362-9377.
19. Lo, T.-Y.; Chao, C.-C.; Ho, R.-M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L., Phase Transitions of Polystyrene-b-poly(dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules 2013, 46 (18), 7513-7524.
20. Lin, T.-C.; Yang, K.-C.; Georgopanos, P.; Avgeropoulos, A.; Ho, R.-M., Gyroid-structured nanoporous polymer monolith from PDMS-containing block copolymers for templated synthesis. Polymer 2017, 126, 360-367.
21. Furneaux, R. C.; Rigby, W. R.; Davidson, A. P., The formation of controlled-porosity membranes from anodically oxidized aluminium. Nature 1989, 337, 147.
22. Fleischer, R. L.; Price, P. B.; Walker, R. M., Nuclear Tracks in Solids. 1975.
23. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D., Periodic area-minimizing surfaces in block copolymers. Nature 1988, 334, 598.
24. Bates, F. S.; Fredrickson, G. H., Block Copolymer Thermodynamics: Theory and Experiment. Annual Review of Physical Chemistry 1990, 41 (1), 525-557.
25. Bates, F. S.; Fredrickson, G. H., Block Copolymers—Designer Soft Materials. Physics Today 1990, 52, 32.
26. Tseng, W.-H.; Chen, C.-K.; Chiang, Y.-W.; Ho, R.-M.; Akasaka, S.; Hasegawa, H., Helical Nanocomposites from Chiral Block Copolymer Templates. Journal of the American Chemical Society 2009, 131 (4), 1356-1357.
27. Hsueh, H.-Y.; Chen, H.-Y.; She, M.-S.; Chen, C.-K.; Ho, R.-M.; Gwo, S.; Hasegawa, H.; Thomas, E. L., Inorganic Gyroid with Exceptionally Low Refractive Index from Block Copolymer Templating. Nano Letters 2010, 10 (12), 4994-5000.
28. Hsueh, H.-Y.; Ho, R.-M., Bicontinuous Ceramics with High Surface Area from Block Copolymer Templates. Langmuir 2012, 28 (22), 8518-8529.
29. Crossland, E. J. W.; Kamperman, M.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D. M.; Toombes, G. E. S.; Hillmyer, M. A.; Ludwigs, S.; Steiner, U.; Snaith, H. J., A Bicontinuous Double Gyroid Hybrid Solar Cell. Nano Letters 2009, 9 (8), 2807-2812.
30. Crossland, E. J. W.; Ludwigs, S.; Hillmyer, M. A.; Steiner, U., Control of gyroid forming block copolymer templates: effects of an electric field and surface topography. Soft Matter 2010, 6 (3), 670-676.
31. Vignolini, S.; Yufa, N. A.; Cunha, P. S.; Guldin, S.; Rushkin, I.; Stefik, M.; Hur, K.; Wiesner, U.; Baumberg, J. J.; Steiner, U., A 3D Optical Metamaterial Made by Self-Assembly. Advanced Materials 2011, 24 (10), OP23-OP27.
32. Scherer, M. R. J.; Li, L.; Cunha, P. M. S.; Scherman, O. A.; Steiner, U., Enhanced Electrochromism in Gyroid-Structured Vanadium Pentoxide. Advanced Materials 2012, 24 (9), 1217-1221.
33. Wei, D.; Scherer, M. R. J.; Bower, C.; Andrew, P.; Ryhänen, T.; Steiner, U., A Nanostructured Electrochromic Supercapacitor. Nano Letters 2012, 12 (4), 1857-1862.
34. Scherer, M. R. J.; Steiner, U., Efficient Electrochromic Devices Made from 3D Nanotubular Gyroid Networks. Nano Letters 2013, 13 (7), 3005-3010.
35. Hashimoto, T.; Tsutsumi, K.; Funaki, Y., Nanoprocessing Based on Bicontinuous Microdomains of Block Copolymers:  Nanochannels Coated with Metals. Langmuir 1997, 13 (26), 6869-6872.
36. Railsback, J. G.; Johnston-Peck, A. C.; Wang, J.; Tracy, J. B., Size-Dependent Nanoscale Kirkendall Effect During the Oxidation of Nickel Nanoparticles. ACS Nano 2010, 4 (4), 1913-1920.
37. du Sart, G. G.; Vukovic, I.; Vukovic, Z.; Polushkin, E.; Hiekkataipale, P.; Ruokolainen, J.; Loos, K.; ten Brinke, G., Nanoporous Network Channels from Self-Assembled Triblock Copolymer Supramolecules. Macromolecular Rapid Communications 2010, 32 (4), 366-370.
38. Hsueh, H.-Y.; Huang, Y.-C.; Ho, R.-M.; Lai, C.-H.; Makida, T.; Hasegawa, H., Nanoporous Gyroid Nickel from Block Copolymer Templates via Electroless Plating. Advanced Materials 2011, 23 (27), 3041-3046.
39. Hsueh, H.-Y.; Chen, H.-Y.; Hung, Y.-C.; Ling, Y.-C.; Gwo, S.; Ho, R.-M., Well-Defined Multibranched Gold with Surface Plasmon Resonance in Near-Infrared Region from Seeding Growth Approach Using Gyroid Block Copolymer Template. Advanced Materials 2013, 25 (12), 1780-1786.
40. Li, F.; Yao, X.; Wang, Z.; Xing, W.; Jin, W.; Huang, J.; Wang, Y., Highly Porous Metal Oxide Networks of Interconnected Nanotubes by Atomic Layer Deposition. Nano Letters 2012, 12 (9), 5033-5038.
41. Kim, E.; Vaynzof, Y.; Sepe, A.; Guldin, S.; Scherer, M.; Cunha, P.; Roth, S. V.; Steiner, U., Gyroid-Structured 3D ZnO Networks Made by Atomic Layer Deposition. Advanced Functional Materials 2013, 24 (6), 863-872.
42. Luzzati, V.; Spegt, P. A., Polymorphism of Lipids. Nature 1967, 215, 701.
43. Hsueh, H.-Y.; Yao, C.-T.; Ho, R.-M., Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. Chemical Society Reviews 2015, 44 (7), 1974-2018.
44. Gu, Y.; Werner, J. G.; Dorin, R. M.; Robbins, S. W.; Wiesner, U., Graded porous inorganic materials derived from self-assembled block copolymer templates. Nanoscale 2015, 7 (13), 5826-5834.
45. Yang, K.-C.; Yao, C.-T.; Huang, L.-Y.; Tsai, J.-C.; Hung, W.-S.; Hsueh, H.-Y.; Ho, R.-M., Single gyroid-structured metallic nanoporous spheres fabricated from double gyroid-forming block copolymers via templated electroless plating. NPG Asia Materials 2019, 11 (1), 9.
46. Hsueh, H.-Y.; Ling, Y.-C.; Wang, H.-F.; Chien, L.-Y. C.; Hung, Y.-C.; Thomas, E. L.; Ho, R.-M., Shifting Networks to Achieve Subgroup Symmetry Properties. Advanced Materials 2014, 26 (20), 3225-3229.
47. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y., Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews 2011, 111 (6), 3669-3712.
48. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic Metal Nanoparticles:  Synthesis, Assembly, and Optical Applications. The Journal of Physical Chemistry B 2005, 109 (29), 13857-13870.
49. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T., Synthesis of Monodisperse Spherical Nanocrystals. Angewandte Chemie International Edition 2007, 46 (25), 4630-4660.
50. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A., Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Accounts of Chemical Research 2008, 41 (12), 1578-1586.
51. Tao, A. R.; Habas, S.; Yang, P., Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4 (3), 310-325.
52. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E., Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angewandte Chemie International Edition 2008, 48 (1), 60-103.
53. Cobley, C. M.; Xia, Y., Engineering the properties of metal nanostructures via galvanic replacement reactions. Materials Science and Engineering: R: Reports 2010, 70 (3), 44-62.
54. Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y., Gold Nanocages: Synthesis, Properties, and Applications. Accounts of Chemical Research 2008, 41 (12), 1587-1595.
55. Lu, X.; Chen, J.; Skrabalak, S. E.; Xia, Y., Galvanic replacement reaction: A simple and powerful route to hollow and porous metal nanostructures. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 2007, 221 (1), 1-16.
56. Cobley, C. M.; Campbell, D. J.; Xia, Y., Tailoring the Optical and Catalytic Properties of Gold-Silver Nanoboxes and Nanocages by Introducing Palladium. Advanced Materials 2008, 20 (4), 748-752.
57. P. D. Hede , S. P. B., Inorganic and Applied Chemistry. 2007.
58. Silberberg, M. S., Chemistry: The Molecular Nature of Matter and Change. 2000.
59. Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y., 25th Anniversary Article: Galvanic Replacement: A Simple and Versatile Route to Hollow Nanostructures with Tunable and Well-Controlled Properties. Advanced Materials 2013, 25 (44), 6313-6333.
60. Hong, X.; Wang, D.; Cai, S.; Rong, H.; Li, Y., Single-Crystalline Octahedral Au–Ag Nanoframes. Journal of the American Chemical Society 2012, 134 (44), 18165-18168.
61. Wang, Z. L., Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. The Journal of Physical Chemistry B 2000, 104 (6), 1153-1175.
62. Wang, Z. L.; Ahmad, T. S.; El-Sayed, M. A., Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes. Surface Science 1997, 380 (2), 302-310.
63. Sun, Y.; Xia, Y., Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium. Journal of the American Chemical Society 2004, 126 (12), 3892-3901.
64. Sun, Y.; Mayers, B. T.; Xia, Y., Template-Engaged Replacement Reaction:  A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors. Nano Letters 2002, 2 (5), 481-485.
65. Shi, H.; Zhang, L.; Cai, W., Composition modulation of optical absorption in AgxAu1−x alloy nanocrystals in situ formed within pores of mesoporous silica. Journal of Applied Physics 2000, 87 (3), 1572-1574.
66. Batzill, M.; Koel, B. E., Silver on Pt(100)––room temperature growth and high temperature alloying. Surface Science 2004, 553 (1), 50-60.
67. Au, L.; Chen, Y.; Zhou, F.; Camargo, P. H. C.; Lim, B.; Li, Z.-Y.; Ginger, D. S.; Xia, Y., Synthesis and optical properties of cubic gold nanoframes. Nano Research 2008, 1 (6), 441-449.
68. Au, L.; Lu, X.; Xia, Y., A Comparative Study of Galvanic Replacement Reactions Involving Ag Nanocubes and AuCl2− or AuCl4−. Advanced Materials 2008, 20 (13), 2517-2522.
69. Dursun, A.; Pugh, D. V.; Corcoran, S. G., Probing the Dealloying Critical Potential: Morphological Characterization and Steady-State Current Behavior. Journal of The Electrochemical Society 2005, 152 (2), B65-B72.
70. Erlebacher, J., An Atomistic Description of Dealloying: Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior. Journal of The Electrochemical Society 2004, 151 (10), C614-C626.
71. Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K., Evolution of nanoporosity in dealloying. Nature 2001, 410, 450.
72. Newman, R. C.; Sieradzki, K., Metallic Corrosion. Science 1994, 263 (5154), 1708-1709.
73. Sieradzki, K., Curvature Effects in Alloy Dissolution. Journal of The Electrochemical Society 1993, 140 (10), 2868-2872.
74. Roosen, A. R.; Carter, W. C., Simulations of microstructural evolution: anisotropic growth and coarsening. Physica A: Statistical Mechanics and its Applications 1998, 261 (1), 232-247.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *